Spaces:
Runtime error
Runtime error
import torch | |
import CLIP.clip as clip | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
import matplotlib.pyplot as plt | |
from captum.attr import visualization | |
import os | |
from CLIP.clip.simple_tokenizer import SimpleTokenizer as _Tokenizer | |
_tokenizer = _Tokenizer() | |
#@title Control context expansion (number of attention layers to consider) | |
#@title Number of layers for image Transformer | |
#start_layer = 11#@param {type:"number"} | |
#@title Number of layers for text Transformer | |
start_layer_text = 11#@param {type:"number"} | |
def interpret(image, texts, model, device, start_layer): | |
batch_size = texts.shape[0] | |
images = image.repeat(batch_size, 1, 1, 1) | |
logits_per_image, logits_per_text = model(images, texts) | |
probs = logits_per_image.softmax(dim=-1).detach().cpu().numpy() | |
index = [i for i in range(batch_size)] | |
one_hot = np.zeros((logits_per_image.shape[0], logits_per_image.shape[1]), dtype=np.float32) | |
one_hot[torch.arange(logits_per_image.shape[0]), index] = 1 | |
one_hot = torch.from_numpy(one_hot).requires_grad_(True) | |
one_hot = torch.sum(one_hot.to(device) * logits_per_image) | |
model.zero_grad() | |
image_attn_blocks = list(dict(model.visual.transformer.resblocks.named_children()).values()) | |
num_tokens = image_attn_blocks[0].attn_probs.shape[-1] | |
R = torch.eye(num_tokens, num_tokens, dtype=image_attn_blocks[0].attn_probs.dtype).to(device) | |
R = R.unsqueeze(0).expand(batch_size, num_tokens, num_tokens) | |
for i, blk in enumerate(image_attn_blocks): | |
if i < start_layer: | |
continue | |
grad = torch.autograd.grad(one_hot, [blk.attn_probs], retain_graph=True)[0].detach() | |
cam = blk.attn_probs.detach() | |
cam = cam.reshape(-1, cam.shape[-1], cam.shape[-1]) | |
grad = grad.reshape(-1, grad.shape[-1], grad.shape[-1]) | |
cam = grad * cam | |
cam = cam.reshape(batch_size, -1, cam.shape[-1], cam.shape[-1]) | |
cam = cam.clamp(min=0).mean(dim=1) | |
R = R + torch.bmm(cam, R) | |
image_relevance = R[:, 0, 1:] | |
text_attn_blocks = list(dict(model.transformer.resblocks.named_children()).values()) | |
num_tokens = text_attn_blocks[0].attn_probs.shape[-1] | |
R_text = torch.eye(num_tokens, num_tokens, dtype=text_attn_blocks[0].attn_probs.dtype).to(device) | |
R_text = R_text.unsqueeze(0).expand(batch_size, num_tokens, num_tokens) | |
for i, blk in enumerate(text_attn_blocks): | |
if i < start_layer_text: | |
continue | |
grad = torch.autograd.grad(one_hot, [blk.attn_probs], retain_graph=True)[0].detach() | |
cam = blk.attn_probs.detach() | |
cam = cam.reshape(-1, cam.shape[-1], cam.shape[-1]) | |
grad = grad.reshape(-1, grad.shape[-1], grad.shape[-1]) | |
cam = grad * cam | |
cam = cam.reshape(batch_size, -1, cam.shape[-1], cam.shape[-1]) | |
cam = cam.clamp(min=0).mean(dim=1) | |
R_text = R_text + torch.bmm(cam, R_text) | |
text_relevance = R_text | |
return text_relevance, image_relevance | |
def show_image_relevance(image_relevance, image, orig_image, device): | |
# create heatmap from mask on image | |
def show_cam_on_image(img, mask): | |
heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET) | |
heatmap = np.float32(heatmap) / 255 | |
cam = heatmap + np.float32(img) | |
cam = cam / np.max(cam) | |
return cam | |
rel_shp = np.sqrt(image_relevance.shape[0]).astype(int) | |
img_size = image.shape[-1] | |
image_relevance = image_relevance.reshape(1, 1, rel_shp, rel_shp) | |
image_relevance = torch.nn.functional.interpolate(image_relevance, size=img_size, mode='bilinear') | |
image_relevance = image_relevance.reshape(img_size, img_size).data.cpu().numpy() | |
image_relevance = (image_relevance - image_relevance.min()) / (image_relevance.max() - image_relevance.min()) | |
image = image[0].permute(1, 2, 0).data.cpu().numpy() | |
image = (image - image.min()) / (image.max() - image.min()) | |
vis = show_cam_on_image(image, image_relevance) | |
vis = np.uint8(255 * vis) | |
vis = cv2.cvtColor(np.array(vis), cv2.COLOR_RGB2BGR) | |
return image_relevance | |
def show_heatmap_on_text(text, text_encoding, R_text): | |
CLS_idx = text_encoding.argmax(dim=-1) | |
R_text = R_text[CLS_idx, 1:CLS_idx] | |
text_scores = R_text / R_text.sum() | |
text_scores = text_scores.flatten() | |
# print(text_scores) | |
text_tokens=_tokenizer.encode(text) | |
text_tokens_decoded=[_tokenizer.decode([a]) for a in text_tokens] | |
vis_data_records = [visualization.VisualizationDataRecord(text_scores,0,0,0,0,0,text_tokens_decoded,1)] | |
return text_scores, text_tokens_decoded | |
def show_img_heatmap(image_relevance, image, orig_image, device): | |
return show_image_relevance(image_relevance, image, orig_image, device) | |
def show_txt_heatmap(text, text_encoding, R_text): | |
return show_heatmap_on_text(text, text_encoding, R_text) | |
def load_dataset(): | |
dataset_path = os.path.join('..', '..', 'dummy-data', '71226_segments' + '.pt') | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
data = torch.load(dataset_path, map_location=device) | |
return data | |
class color: | |
PURPLE = '\033[95m' | |
CYAN = '\033[96m' | |
DARKCYAN = '\033[36m' | |
BLUE = '\033[94m' | |
GREEN = '\033[92m' | |
YELLOW = '\033[93m' | |
RED = '\033[91m' | |
BOLD = '\033[1m' | |
UNDERLINE = '\033[4m' | |
END = '\033[0m' | |