paul hilders
Use font Arial
41478ca
raw
history blame
5.92 kB
import sys
import gradio as gr
# sys.path.append("../")
sys.path.append("CLIP_explainability/Transformer-MM-Explainability/")
import torch
import CLIP.clip as clip
import spacy
from PIL import Image, ImageFont, ImageDraw, ImageOps
import os
os.system('python -m spacy download en_core_web_sm')
from clip_grounding.utils.image import pad_to_square
from clip_grounding.datasets.png import (
overlay_relevance_map_on_image,
)
from CLIP_explainability.utils import interpret, show_img_heatmap, show_heatmap_on_text
clip.clip._MODELS = {
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
}
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device, jit=False)
# nlp = spacy.load("en_core_web_sm")
import en_core_web_sm
nlp = en_core_web_sm.load()
# Gradio Section:
def run_demo(image, text):
orig_image = pad_to_square(image)
img = preprocess(orig_image).unsqueeze(0).to(device)
text_input = clip.tokenize([text]).to(device)
R_text, R_image = interpret(model=model, image=img, texts=text_input, device=device)
image_relevance = show_img_heatmap(R_image[0], img, orig_image=orig_image, device=device, show=False)
overlapped = overlay_relevance_map_on_image(image, image_relevance)
text_scores, text_tokens_decoded = show_heatmap_on_text(text, text_input, R_text[0], show=False)
highlighted_text = []
for i, token in enumerate(text_tokens_decoded):
highlighted_text.append((str(token), float(text_scores[i])))
return overlapped, highlighted_text
# Default demo:
input_img = gr.inputs.Image(type='pil', label="Original Image")
input_txt = "text"
inputs = [input_img, input_txt]
outputs = [gr.inputs.Image(type='pil', label="Output Image"), "highlight"]
iface = gr.Interface(fn=run_demo,
inputs=inputs,
outputs=outputs,
title="CLIP Grounding Explainability",
description="A demonstration based on the Generic Attention-model Explainability method for Interpreting Bi-Modal Transformers by Chefer et al. (2021): https://github.com/hila-chefer/Transformer-MM-Explainability.",
examples=[["example_images/London.png", "London Eye"],
["example_images/London.png", "Big Ben"],
["example_images/harrypotter.png", "Harry"],
["example_images/harrypotter.png", "Hermione"],
["example_images/harrypotter.png", "Ron"],
["example_images/Amsterdam.png", "Amsterdam canal"],
["example_images/Amsterdam.png", "Old buildings"],
["example_images/Amsterdam.png", "Pink flowers"],
["example_images/dogs_on_bed.png", "Two dogs"],
["example_images/dogs_on_bed.png", "Book"],
["example_images/dogs_on_bed.png", "Cat"]])
# NER demo:
def add_label_to_img(img, label):
img = ImageOps.expand(img, border=45, fill=(255,255,255))
draw = ImageDraw.Draw(img)
font = ImageFont.truetype("arial.ttf", 36)
draw.text((0,0), label, align="center", fill=(0, 0, 0), font=font)
return img
def NER_demo(image, text):
# Apply NER to extract named entities, and run the explainability method
# for each named entity.
highlighed_entities = []
for ent in nlp(text).ents:
ent_text = ent.text
ent_label = ent.label_
highlighed_entities.append((ent_text, ent_label))
# As the default image, we run the default demo on the input image and text:
overlapped, highlighted_text = run_demo(image, text)
# Then, we run the demo for each of the named entities:
gallery_images = [overlapped]
for ent_text, ent_label in highlighed_entities:
overlapped_ent, highlighted_text_ent = run_demo(image, ent_text)
overlapped_ent_labelled = add_label_to_img(overlapped_ent, ent_text)
gallery_images.append(overlapped_ent_labelled)
return highlighed_entities, gallery_images
input_img_NER = gr.inputs.Image(type='pil', label="Original Image")
input_txt_NER = "text"
inputs_NER = [input_img_NER, input_txt_NER]
outputs_NER = ["highlight", gr.Gallery(type='pil', label="NER Entity explanations")]
iface_NER = gr.Interface(fn=NER_demo,
inputs=inputs_NER,
outputs=outputs_NER,
examples=[["example_images/London.png", "London Eye"],
["example_images/London.png", "Big Ben"],
["example_images/harrypotter.png", "Harry"],
["example_images/harrypotter.png", "Hermione"],
["example_images/harrypotter.png", "Ron"],
["example_images/Amsterdam.png", "Amsterdam canal"],
["example_images/Amsterdam.png", "Old buildings"],
["example_images/Amsterdam.png", "Pink flowers"],
["example_images/dogs_on_bed.png", "Two dogs"],
["example_images/dogs_on_bed.png", "Book"],
["example_images/dogs_on_bed.png", "Cat"]],
cache_examples=False)
demo_tabs = gr.TabbedInterface([iface, iface_NER], ["Default", "NER"])
demo_tabs.launch(debug=True)