File size: 7,606 Bytes
0241217
 
 
 
 
 
 
 
 
d80767e
c3ca2bd
d80767e
e71dad4
ae6e057
e71dad4
0241217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae6e057
 
 
d80767e
0241217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
929c841
 
 
 
 
 
 
 
 
 
 
66dfac7
9ee9e02
9775911
8434fc6
66dfac7
 
fbfde1a
 
 
66dfac7
929c841
 
 
 
66dfac7
929c841
 
 
 
 
 
 
 
 
 
 
 
 
39c7251
201e3f5
c3ca2bd
39c7251
 
abf0d58
39c7251
abf0d58
c3ca2bd
 
 
929c841
cca85c2
 
2910b3b
 
 
 
14dfe9b
 
6d91375
 
cca85c2
6d91375
39c7251
6d91375
 
c81ac67
c3ca2bd
 
6d91375
 
0241217
f0f4f09
 
 
0241217
6d91375
0241217
9775911
852d405
 
 
0241217
929c841
be112ad
 
66dfac7
9775911
2a6b42b
c81ac67
3cba57d
929c841
b43e284
 
9b5cfa8
0bd28ed
9b5cfa8
9fa77d1
9b5cfa8
d6ba55e
 
 
9fa77d1
05b69fa
9fa77d1
9b5cfa8
beb163b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import sys
import gradio as gr

# sys.path.append("../")
sys.path.append("CLIP_explainability/Transformer-MM-Explainability/")

import torch
import CLIP.clip as clip

import spacy
from PIL import Image, ImageFont, ImageDraw, ImageOps

import os
os.system('python -m spacy download en_core_web_sm')


from clip_grounding.utils.image import pad_to_square
from clip_grounding.datasets.png import (
    overlay_relevance_map_on_image,
)
from CLIP_explainability.utils import interpret, show_img_heatmap, show_heatmap_on_text

clip.clip._MODELS = {
    "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
    "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
}

device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device, jit=False)

# nlp = spacy.load("en_core_web_sm")
import en_core_web_sm
nlp = en_core_web_sm.load()

# Gradio Section:
def run_demo(image, text):
    orig_image = pad_to_square(image)
    img = preprocess(orig_image).unsqueeze(0).to(device)
    text_input = clip.tokenize([text]).to(device)

    R_text, R_image = interpret(model=model, image=img, texts=text_input, device=device)

    image_relevance = show_img_heatmap(R_image[0], img, orig_image=orig_image, device=device, show=False)
    overlapped = overlay_relevance_map_on_image(image, image_relevance)

    text_scores, text_tokens_decoded = show_heatmap_on_text(text, text_input, R_text[0], show=False)

    highlighted_text = []
    for i, token in enumerate(text_tokens_decoded):
        highlighted_text.append((str(token), float(text_scores[i])))

    return overlapped, highlighted_text


# Default demo:
input_img = gr.inputs.Image(type='pil', label="Original Image")
input_txt = "text"
inputs = [input_img, input_txt]

outputs = [gr.inputs.Image(type='pil', label="Output Image"), "highlight"]


description = """A demonstration based on the Generic Attention-model Explainability method for Interpreting Bi-Modal

                 Transformers by Chefer et al. (2021): https://github.com/hila-chefer/Transformer-MM-Explainability.

                 <br> <br>

                 This demo shows attributions scores on both the image and the text input when presenting CLIP with a

                 <text,image> pair. Attributions are computed as Gradient-weighted Attention Rollout (Chefer et al.,

                 2021), and can be thought of as an estimate of the effective attention CLIP pays to its input when

                 computing a multimodal representation. <span style="color:red">Warning:</span> Note that attribution

                 methods such as the one from this demo can only give an estimate of the real underlying behavior

                 of the model."""

iface = gr.Interface(fn=run_demo,
                     inputs=inputs,
                     outputs=outputs,
                     title="CLIP Grounding Explainability",
                     description=description,
                     examples=[["example_images/London.png", "London Eye"],
                               ["example_images/London.png", "Big Ben"],
                               ["example_images/harrypotter.png", "Harry"],
                               ["example_images/harrypotter.png", "Hermione"],
                               ["example_images/harrypotter.png", "Ron"],
                               ["example_images/Amsterdam.png", "Amsterdam canal"],
                               ["example_images/Amsterdam.png", "Old buildings"],
                               ["example_images/Amsterdam.png", "Pink flowers"],
                               ["example_images/dogs_on_bed.png", "Two dogs"],
                               ["example_images/dogs_on_bed.png", "Book"],
                               ["example_images/dogs_on_bed.png", "Cat"]])

# NER demo:
def add_label_to_img(img, label, add_entity_label=True):
    img = ImageOps.expand(img, border=45, fill=(255,255,255))
    draw = ImageDraw.Draw(img)
    font = ImageFont.truetype("arial.ttf", 24)
    if add_entity_label:
        draw.text((5,5), f"Entity: {str(label)}" , align="center", fill=(0, 0, 0), font=font)
    else:
        draw.text((5,5), str(label), align="center", fill=(0, 0, 0), font=font)

    return img

def NER_demo(image, text):
    # Apply NER to extract named entities, and run the explainability method
    # for each named entity.
    highlighed_entities = []
    for ent in nlp(text).ents:
        ent_text = ent.text
        ent_label = ent.label_
        highlighed_entities.append((ent_text, ent_label))

    # As the default image, we run the default demo on the input image and text:
    overlapped, highlighted_text = run_demo(image, text)

    # Then, we run the demo for each of the named entities:
    gallery_images = [add_label_to_img(overlapped, "Full explanation", add_entity_label=False)]
    for ent_text, ent_label in highlighed_entities:
        overlapped_ent, highlighted_text_ent = run_demo(image, ent_text)
        overlapped_ent_labelled = add_label_to_img(overlapped_ent, f"{str(ent_text)} ({str(ent_label)})")

        gallery_images.append(overlapped_ent_labelled)

    return highlighed_entities, gallery_images

input_img_NER = gr.inputs.Image(type='pil', label="Original Image")
input_txt_NER = "text"
inputs_NER = [input_img_NER, input_txt_NER]

outputs_NER = ["highlight", gr.Gallery(type='pil', label="NER Entity explanations")]

description_NER = """Automatically generated CLIP grounding explanations for

                     named entities, retrieved from the spacy NER model. <span style="color:red">Warning:</span> Note

                     that attribution methods such as the one from this demo can only give an estimate of the real

                     underlying behavior of the model."""

iface_NER = gr.Interface(fn=NER_demo,
                         inputs=inputs_NER,
                         outputs=outputs_NER,
                         title="Named Entity Grounding explainability using CLIP",
                         description=description_NER,
                         examples=[["example_images/London.png", "In this image we see Big Ben and the London Eye, on both sides of the river Thames."]],
                         cache_examples=False)

demo_tabs = gr.TabbedInterface([iface, iface_NER], ["Default", "NER"])

with demo_tabs:
    gr.Markdown("""

                ### Acknowledgements

                This demo was developed for the Interpretability & Explainability in AI course at the University of

                Amsterdam. We would like to express our thanks to Jelle Zuidema, Jaap Jumelet, Tom Kersten, Christos

                Athanasiadis, Peter Heemskerk, Zhi Zhang, and all the other TAs who helped us during this course.



                ---

                ### References

                \[1\]: Chefer, H., Gur, S., & Wolf, L. (2021). Generic attention-model explainability for interpreting bi-modal and encoder-decoder transformers. <br>

                \[2\]: Abnar, S., & Zuidema, W. (2020). Quantifying attention flow in transformers. arXiv preprint arXiv:2005.00928. <br>

                \[3\]: [https://samiraabnar.github.io/articles/2020-04/attention_flow](https://samiraabnar.github.io/articles/2020-04/attention_flow) <br>

                """)
demo_tabs.launch(show_error=True)