Spaces:
Sleeping
Sleeping
# This module is from [WeNet](https://github.com/wenet-e2e/wenet). | |
# ## Citations | |
# ```bibtex | |
# @inproceedings{yao2021wenet, | |
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, | |
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, | |
# booktitle={Proc. Interspeech}, | |
# year={2021}, | |
# address={Brno, Czech Republic }, | |
# organization={IEEE} | |
# } | |
# @article{zhang2022wenet, | |
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, | |
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, | |
# journal={arXiv preprint arXiv:2203.15455}, | |
# year={2022} | |
# } | |
# | |
from __future__ import print_function | |
import argparse | |
import copy | |
import logging | |
import os | |
import sys | |
import torch | |
import yaml | |
from torch.utils.data import DataLoader | |
from wenet.dataset.dataset import Dataset | |
from wenet.paraformer.search.beam_search import build_beam_search | |
from wenet.utils.checkpoint import load_checkpoint | |
from wenet.utils.file_utils import read_symbol_table, read_non_lang_symbols | |
from wenet.utils.config import override_config | |
from wenet.utils.init_model import init_model | |
def get_args(): | |
parser = argparse.ArgumentParser(description="recognize with your model") | |
parser.add_argument("--config", required=True, help="config file") | |
parser.add_argument("--test_data", required=True, help="test data file") | |
parser.add_argument( | |
"--data_type", | |
default="raw", | |
choices=["raw", "shard"], | |
help="train and cv data type", | |
) | |
parser.add_argument( | |
"--gpu", type=int, default=-1, help="gpu id for this rank, -1 for cpu" | |
) | |
parser.add_argument("--checkpoint", required=True, help="checkpoint model") | |
parser.add_argument("--dict", required=True, help="dict file") | |
parser.add_argument( | |
"--non_lang_syms", help="non-linguistic symbol file. One symbol per line." | |
) | |
parser.add_argument( | |
"--beam_size", type=int, default=10, help="beam size for search" | |
) | |
parser.add_argument("--penalty", type=float, default=0.0, help="length penalty") | |
parser.add_argument("--result_file", required=True, help="asr result file") | |
parser.add_argument("--batch_size", type=int, default=16, help="asr result file") | |
parser.add_argument( | |
"--mode", | |
choices=[ | |
"attention", | |
"ctc_greedy_search", | |
"ctc_prefix_beam_search", | |
"attention_rescoring", | |
"rnnt_greedy_search", | |
"rnnt_beam_search", | |
"rnnt_beam_attn_rescoring", | |
"ctc_beam_td_attn_rescoring", | |
"hlg_onebest", | |
"hlg_rescore", | |
"paraformer_greedy_search", | |
"paraformer_beam_search", | |
], | |
default="attention", | |
help="decoding mode", | |
) | |
parser.add_argument( | |
"--search_ctc_weight", | |
type=float, | |
default=1.0, | |
help="ctc weight for nbest generation", | |
) | |
parser.add_argument( | |
"--search_transducer_weight", | |
type=float, | |
default=0.0, | |
help="transducer weight for nbest generation", | |
) | |
parser.add_argument( | |
"--ctc_weight", | |
type=float, | |
default=0.0, | |
help="ctc weight for rescoring weight in \ | |
attention rescoring decode mode \ | |
ctc weight for rescoring weight in \ | |
transducer attention rescore decode mode", | |
) | |
parser.add_argument( | |
"--transducer_weight", | |
type=float, | |
default=0.0, | |
help="transducer weight for rescoring weight in " | |
"transducer attention rescore mode", | |
) | |
parser.add_argument( | |
"--attn_weight", | |
type=float, | |
default=0.0, | |
help="attention weight for rescoring weight in " | |
"transducer attention rescore mode", | |
) | |
parser.add_argument( | |
"--decoding_chunk_size", | |
type=int, | |
default=-1, | |
help="""decoding chunk size, | |
<0: for decoding, use full chunk. | |
>0: for decoding, use fixed chunk size as set. | |
0: used for training, it's prohibited here""", | |
) | |
parser.add_argument( | |
"--num_decoding_left_chunks", | |
type=int, | |
default=-1, | |
help="number of left chunks for decoding", | |
) | |
parser.add_argument( | |
"--simulate_streaming", action="store_true", help="simulate streaming inference" | |
) | |
parser.add_argument( | |
"--reverse_weight", | |
type=float, | |
default=0.0, | |
help="""right to left weight for attention rescoring | |
decode mode""", | |
) | |
parser.add_argument( | |
"--bpe_model", default=None, type=str, help="bpe model for english part" | |
) | |
parser.add_argument( | |
"--override_config", action="append", default=[], help="override yaml config" | |
) | |
parser.add_argument( | |
"--connect_symbol", | |
default="", | |
type=str, | |
help="used to connect the output characters", | |
) | |
parser.add_argument( | |
"--word", default="", type=str, help="word file, only used for hlg decode" | |
) | |
parser.add_argument( | |
"--hlg", default="", type=str, help="hlg file, only used for hlg decode" | |
) | |
parser.add_argument( | |
"--lm_scale", | |
type=float, | |
default=0.0, | |
help="lm scale for hlg attention rescore decode", | |
) | |
parser.add_argument( | |
"--decoder_scale", | |
type=float, | |
default=0.0, | |
help="lm scale for hlg attention rescore decode", | |
) | |
parser.add_argument( | |
"--r_decoder_scale", | |
type=float, | |
default=0.0, | |
help="lm scale for hlg attention rescore decode", | |
) | |
args = parser.parse_args() | |
print(args) | |
return args | |
def main(): | |
args = get_args() | |
logging.basicConfig( | |
level=logging.DEBUG, format="%(asctime)s %(levelname)s %(message)s" | |
) | |
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu) | |
if ( | |
args.mode | |
in [ | |
"ctc_prefix_beam_search", | |
"attention_rescoring", | |
"paraformer_beam_search", | |
] | |
and args.batch_size > 1 | |
): | |
logging.fatal( | |
"decoding mode {} must be running with batch_size == 1".format(args.mode) | |
) | |
sys.exit(1) | |
with open(args.config, "r") as fin: | |
configs = yaml.load(fin, Loader=yaml.FullLoader) | |
if len(args.override_config) > 0: | |
configs = override_config(configs, args.override_config) | |
symbol_table = read_symbol_table(args.dict) | |
test_conf = copy.deepcopy(configs["dataset_conf"]) | |
test_conf["filter_conf"]["max_length"] = 102400 | |
test_conf["filter_conf"]["min_length"] = 0 | |
test_conf["filter_conf"]["token_max_length"] = 102400 | |
test_conf["filter_conf"]["token_min_length"] = 0 | |
test_conf["filter_conf"]["max_output_input_ratio"] = 102400 | |
test_conf["filter_conf"]["min_output_input_ratio"] = 0 | |
test_conf["speed_perturb"] = False | |
test_conf["spec_aug"] = False | |
test_conf["spec_sub"] = False | |
test_conf["spec_trim"] = False | |
test_conf["shuffle"] = False | |
test_conf["sort"] = False | |
if "fbank_conf" in test_conf: | |
test_conf["fbank_conf"]["dither"] = 0.0 | |
elif "mfcc_conf" in test_conf: | |
test_conf["mfcc_conf"]["dither"] = 0.0 | |
test_conf["batch_conf"]["batch_type"] = "static" | |
test_conf["batch_conf"]["batch_size"] = args.batch_size | |
non_lang_syms = read_non_lang_symbols(args.non_lang_syms) | |
test_dataset = Dataset( | |
args.data_type, | |
args.test_data, | |
symbol_table, | |
test_conf, | |
args.bpe_model, | |
non_lang_syms, | |
partition=False, | |
) | |
test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0) | |
# Init asr model from configs | |
model = init_model(configs) | |
# Load dict | |
char_dict = {v: k for k, v in symbol_table.items()} | |
eos = len(char_dict) - 1 | |
load_checkpoint(model, args.checkpoint) | |
use_cuda = args.gpu >= 0 and torch.cuda.is_available() | |
device = torch.device("cuda" if use_cuda else "cpu") | |
model = model.to(device) | |
model.eval() | |
# Build BeamSearchCIF object | |
if args.mode == "paraformer_beam_search": | |
paraformer_beam_search = build_beam_search(model, args, device) | |
else: | |
paraformer_beam_search = None | |
with torch.no_grad(), open(args.result_file, "w") as fout: | |
for batch_idx, batch in enumerate(test_data_loader): | |
keys, feats, target, feats_lengths, target_lengths = batch | |
feats = feats.to(device) | |
target = target.to(device) | |
feats_lengths = feats_lengths.to(device) | |
target_lengths = target_lengths.to(device) | |
if args.mode == "attention": | |
hyps, _ = model.recognize( | |
feats, | |
feats_lengths, | |
beam_size=args.beam_size, | |
decoding_chunk_size=args.decoding_chunk_size, | |
num_decoding_left_chunks=args.num_decoding_left_chunks, | |
simulate_streaming=args.simulate_streaming, | |
) | |
hyps = [hyp.tolist() for hyp in hyps] | |
elif args.mode == "ctc_greedy_search": | |
hyps, _ = model.ctc_greedy_search( | |
feats, | |
feats_lengths, | |
decoding_chunk_size=args.decoding_chunk_size, | |
num_decoding_left_chunks=args.num_decoding_left_chunks, | |
simulate_streaming=args.simulate_streaming, | |
) | |
elif args.mode == "rnnt_greedy_search": | |
assert feats.size(0) == 1 | |
assert "predictor" in configs | |
hyps = model.greedy_search( | |
feats, | |
feats_lengths, | |
decoding_chunk_size=args.decoding_chunk_size, | |
num_decoding_left_chunks=args.num_decoding_left_chunks, | |
simulate_streaming=args.simulate_streaming, | |
) | |
elif args.mode == "rnnt_beam_search": | |
assert feats.size(0) == 1 | |
assert "predictor" in configs | |
hyps = model.beam_search( | |
feats, | |
feats_lengths, | |
decoding_chunk_size=args.decoding_chunk_size, | |
beam_size=args.beam_size, | |
num_decoding_left_chunks=args.num_decoding_left_chunks, | |
simulate_streaming=args.simulate_streaming, | |
ctc_weight=args.search_ctc_weight, | |
transducer_weight=args.search_transducer_weight, | |
) | |
elif args.mode == "rnnt_beam_attn_rescoring": | |
assert feats.size(0) == 1 | |
assert "predictor" in configs | |
hyps = model.transducer_attention_rescoring( | |
feats, | |
feats_lengths, | |
decoding_chunk_size=args.decoding_chunk_size, | |
beam_size=args.beam_size, | |
num_decoding_left_chunks=args.num_decoding_left_chunks, | |
simulate_streaming=args.simulate_streaming, | |
ctc_weight=args.ctc_weight, | |
transducer_weight=args.transducer_weight, | |
attn_weight=args.attn_weight, | |
reverse_weight=args.reverse_weight, | |
search_ctc_weight=args.search_ctc_weight, | |
search_transducer_weight=args.search_transducer_weight, | |
) | |
elif args.mode == "ctc_beam_td_attn_rescoring": | |
assert feats.size(0) == 1 | |
assert "predictor" in configs | |
hyps = model.transducer_attention_rescoring( | |
feats, | |
feats_lengths, | |
decoding_chunk_size=args.decoding_chunk_size, | |
beam_size=args.beam_size, | |
num_decoding_left_chunks=args.num_decoding_left_chunks, | |
simulate_streaming=args.simulate_streaming, | |
ctc_weight=args.ctc_weight, | |
transducer_weight=args.transducer_weight, | |
attn_weight=args.attn_weight, | |
reverse_weight=args.reverse_weight, | |
search_ctc_weight=args.search_ctc_weight, | |
search_transducer_weight=args.search_transducer_weight, | |
beam_search_type="ctc", | |
) | |
# ctc_prefix_beam_search and attention_rescoring only return one | |
# result in List[int], change it to List[List[int]] for compatible | |
# with other batch decoding mode | |
elif args.mode == "ctc_prefix_beam_search": | |
assert feats.size(0) == 1 | |
hyp, _ = model.ctc_prefix_beam_search( | |
feats, | |
feats_lengths, | |
args.beam_size, | |
decoding_chunk_size=args.decoding_chunk_size, | |
num_decoding_left_chunks=args.num_decoding_left_chunks, | |
simulate_streaming=args.simulate_streaming, | |
) | |
hyps = [hyp] | |
elif args.mode == "attention_rescoring": | |
assert feats.size(0) == 1 | |
hyp, _ = model.attention_rescoring( | |
feats, | |
feats_lengths, | |
args.beam_size, | |
decoding_chunk_size=args.decoding_chunk_size, | |
num_decoding_left_chunks=args.num_decoding_left_chunks, | |
ctc_weight=args.ctc_weight, | |
simulate_streaming=args.simulate_streaming, | |
reverse_weight=args.reverse_weight, | |
) | |
hyps = [hyp] | |
elif args.mode == "hlg_onebest": | |
hyps = model.hlg_onebest( | |
feats, | |
feats_lengths, | |
decoding_chunk_size=args.decoding_chunk_size, | |
num_decoding_left_chunks=args.num_decoding_left_chunks, | |
simulate_streaming=args.simulate_streaming, | |
hlg=args.hlg, | |
word=args.word, | |
symbol_table=symbol_table, | |
) | |
elif args.mode == "hlg_rescore": | |
hyps = model.hlg_rescore( | |
feats, | |
feats_lengths, | |
decoding_chunk_size=args.decoding_chunk_size, | |
num_decoding_left_chunks=args.num_decoding_left_chunks, | |
simulate_streaming=args.simulate_streaming, | |
lm_scale=args.lm_scale, | |
decoder_scale=args.decoder_scale, | |
r_decoder_scale=args.r_decoder_scale, | |
hlg=args.hlg, | |
word=args.word, | |
symbol_table=symbol_table, | |
) | |
elif args.mode == "paraformer_beam_search": | |
hyps = model.paraformer_beam_search( | |
feats, | |
feats_lengths, | |
beam_search=paraformer_beam_search, | |
decoding_chunk_size=args.decoding_chunk_size, | |
num_decoding_left_chunks=args.num_decoding_left_chunks, | |
simulate_streaming=args.simulate_streaming, | |
) | |
elif args.mode == "paraformer_greedy_search": | |
hyps = model.paraformer_greedy_search( | |
feats, | |
feats_lengths, | |
decoding_chunk_size=args.decoding_chunk_size, | |
num_decoding_left_chunks=args.num_decoding_left_chunks, | |
simulate_streaming=args.simulate_streaming, | |
) | |
for i, key in enumerate(keys): | |
content = [] | |
for w in hyps[i]: | |
if w == eos: | |
break | |
content.append(char_dict[w]) | |
logging.info("{} {}".format(key, args.connect_symbol.join(content))) | |
fout.write("{} {}\n".format(key, args.connect_symbol.join(content))) | |
if __name__ == "__main__": | |
main() | |