Spaces:
Sleeping
Sleeping
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
# This code is modified from | |
# https://github.com/lifeiteng/vall-e/blob/9c69096d603ce13174fb5cb025f185e2e9b36ac7/valle/data/tokenizer.py | |
import re | |
from typing import Any, Dict, List, Optional, Pattern, Union | |
import torch | |
import torchaudio | |
from encodec import EncodecModel | |
from encodec.utils import convert_audio | |
class AudioTokenizer: | |
"""EnCodec audio tokenizer for encoding and decoding audio. | |
Attributes: | |
device: The device on which the codec model is loaded. | |
codec: The pretrained EnCodec model. | |
sample_rate: Sample rate of the model. | |
channels: Number of audio channels in the model. | |
""" | |
def __init__(self, device: Any = None) -> None: | |
model = EncodecModel.encodec_model_24khz() | |
model.set_target_bandwidth(6.0) | |
remove_encodec_weight_norm(model) | |
if not device: | |
device = torch.device("cpu") | |
if torch.cuda.is_available(): | |
device = torch.device("cuda:0") | |
self._device = device | |
self.codec = model.to(device) | |
self.sample_rate = model.sample_rate | |
self.channels = model.channels | |
def device(self): | |
return self._device | |
def encode(self, wav: torch.Tensor) -> torch.Tensor: | |
"""Encode the audio waveform. | |
Args: | |
wav: A tensor representing the audio waveform. | |
Returns: | |
A tensor representing the encoded audio. | |
""" | |
return self.codec.encode(wav.to(self.device)) | |
def decode(self, frames: torch.Tensor) -> torch.Tensor: | |
"""Decode the encoded audio frames. | |
Args: | |
frames: A tensor representing the encoded audio frames. | |
Returns: | |
A tensor representing the decoded audio waveform. | |
""" | |
return self.codec.decode(frames) | |
def tokenize_audio(tokenizer: AudioTokenizer, audio_path: str): | |
""" | |
Tokenize the audio waveform using the given AudioTokenizer. | |
Args: | |
tokenizer: An instance of AudioTokenizer. | |
audio_path: Path to the audio file. | |
Returns: | |
A tensor of encoded frames from the audio. | |
Raises: | |
FileNotFoundError: If the audio file is not found. | |
RuntimeError: If there's an error processing the audio data. | |
""" | |
# try: | |
# Load and preprocess the audio waveform | |
wav, sr = torchaudio.load(audio_path) | |
wav = convert_audio(wav, sr, tokenizer.sample_rate, tokenizer.channels) | |
wav = wav.unsqueeze(0) | |
# Extract discrete codes from EnCodec | |
with torch.no_grad(): | |
encoded_frames = tokenizer.encode(wav) | |
return encoded_frames | |
# except FileNotFoundError: | |
# raise FileNotFoundError(f"Audio file not found at {audio_path}") | |
# except Exception as e: | |
# raise RuntimeError(f"Error processing audio data: {e}") | |
def remove_encodec_weight_norm(model): | |
from encodec.modules import SConv1d | |
from encodec.modules.seanet import SConvTranspose1d, SEANetResnetBlock | |
from torch.nn.utils import remove_weight_norm | |
encoder = model.encoder.model | |
for key in encoder._modules: | |
if isinstance(encoder._modules[key], SEANetResnetBlock): | |
remove_weight_norm(encoder._modules[key].shortcut.conv.conv) | |
block_modules = encoder._modules[key].block._modules | |
for skey in block_modules: | |
if isinstance(block_modules[skey], SConv1d): | |
remove_weight_norm(block_modules[skey].conv.conv) | |
elif isinstance(encoder._modules[key], SConv1d): | |
remove_weight_norm(encoder._modules[key].conv.conv) | |
decoder = model.decoder.model | |
for key in decoder._modules: | |
if isinstance(decoder._modules[key], SEANetResnetBlock): | |
remove_weight_norm(decoder._modules[key].shortcut.conv.conv) | |
block_modules = decoder._modules[key].block._modules | |
for skey in block_modules: | |
if isinstance(block_modules[skey], SConv1d): | |
remove_weight_norm(block_modules[skey].conv.conv) | |
elif isinstance(decoder._modules[key], SConvTranspose1d): | |
remove_weight_norm(decoder._modules[key].convtr.convtr) | |
elif isinstance(decoder._modules[key], SConv1d): | |
remove_weight_norm(decoder._modules[key].conv.conv) | |
def extract_encodec_token(wav_path): | |
model = EncodecModel.encodec_model_24khz() | |
model.set_target_bandwidth(6.0) | |
wav, sr = torchaudio.load(wav_path) | |
wav = convert_audio(wav, sr, model.sample_rate, model.channels) | |
wav = wav.unsqueeze(0) | |
if torch.cuda.is_available(): | |
model = model.cuda() | |
wav = wav.cuda() | |
with torch.no_grad(): | |
encoded_frames = model.encode(wav) | |
codes_ = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1) # [B, n_q, T] | |
codes = codes_.cpu().numpy()[0,:,:].T # [T, 8] | |
return codes |