Spaces:
Sleeping
Sleeping
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
from scipy.signal import get_window | |
from librosa.util import pad_center, tiny | |
from librosa.filters import mel as librosa_mel_fn | |
import torch | |
import numpy as np | |
import librosa.util as librosa_util | |
from scipy.signal import get_window | |
def window_sumsquare( | |
window, | |
n_frames, | |
hop_length, | |
win_length, | |
n_fft, | |
dtype=np.float32, | |
norm=None, | |
): | |
""" | |
# from librosa 0.6 | |
Compute the sum-square envelope of a window function at a given hop length. | |
This is used to estimate modulation effects induced by windowing | |
observations in short-time fourier transforms. | |
Parameters | |
---------- | |
window : string, tuple, number, callable, or list-like | |
Window specification, as in `get_window` | |
n_frames : int > 0 | |
The number of analysis frames | |
hop_length : int > 0 | |
The number of samples to advance between frames | |
win_length : [optional] | |
The length of the window function. By default, this matches `n_fft`. | |
n_fft : int > 0 | |
The length of each analysis frame. | |
dtype : np.dtype | |
The data type of the output | |
Returns | |
------- | |
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))` | |
The sum-squared envelope of the window function | |
""" | |
if win_length is None: | |
win_length = n_fft | |
n = n_fft + hop_length * (n_frames - 1) | |
x = np.zeros(n, dtype=dtype) | |
# Compute the squared window at the desired length | |
win_sq = get_window(window, win_length, fftbins=True) | |
win_sq = librosa_util.normalize(win_sq, norm=norm) ** 2 | |
win_sq = librosa_util.pad_center(win_sq, n_fft) | |
# Fill the envelope | |
for i in range(n_frames): | |
sample = i * hop_length | |
x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))] | |
return x | |
def griffin_lim(magnitudes, stft_fn, n_iters=30): | |
""" | |
PARAMS | |
------ | |
magnitudes: spectrogram magnitudes | |
stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods | |
""" | |
angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size()))) | |
angles = angles.astype(np.float32) | |
angles = torch.autograd.Variable(torch.from_numpy(angles)) | |
signal = stft_fn.inverse(magnitudes, angles).squeeze(1) | |
for i in range(n_iters): | |
_, angles = stft_fn.transform(signal) | |
signal = stft_fn.inverse(magnitudes, angles).squeeze(1) | |
return signal | |
def dynamic_range_compression(x, C=1, clip_val=1e-5): | |
""" | |
PARAMS | |
------ | |
C: compression factor | |
""" | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def dynamic_range_decompression(x, C=1): | |
""" | |
PARAMS | |
------ | |
C: compression factor used to compress | |
""" | |
return torch.exp(x) / C | |
class STFT(torch.nn.Module): | |
"""adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft""" | |
def __init__(self, filter_length, hop_length, win_length, window="hann"): | |
super(STFT, self).__init__() | |
self.filter_length = filter_length | |
self.hop_length = hop_length | |
self.win_length = win_length | |
self.window = window | |
self.forward_transform = None | |
scale = self.filter_length / self.hop_length | |
fourier_basis = np.fft.fft(np.eye(self.filter_length)) | |
cutoff = int((self.filter_length / 2 + 1)) | |
fourier_basis = np.vstack( | |
[np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])] | |
) | |
forward_basis = torch.FloatTensor(fourier_basis[:, None, :]) | |
inverse_basis = torch.FloatTensor( | |
np.linalg.pinv(scale * fourier_basis).T[:, None, :] | |
) | |
if window is not None: | |
assert filter_length >= win_length | |
# get window and zero center pad it to filter_length | |
fft_window = get_window(window, win_length, fftbins=True) | |
fft_window = pad_center(fft_window, filter_length) | |
fft_window = torch.from_numpy(fft_window).float() | |
# window the bases | |
forward_basis *= fft_window | |
inverse_basis *= fft_window | |
self.register_buffer("forward_basis", forward_basis.float()) | |
self.register_buffer("inverse_basis", inverse_basis.float()) | |
def transform(self, input_data): | |
num_batches = input_data.size(0) | |
num_samples = input_data.size(1) | |
self.num_samples = num_samples | |
# similar to librosa, reflect-pad the input | |
input_data = input_data.view(num_batches, 1, num_samples) | |
input_data = F.pad( | |
input_data.unsqueeze(1), | |
(int(self.filter_length / 2), int(self.filter_length / 2), 0, 0), | |
mode="reflect", | |
) | |
input_data = input_data.squeeze(1) | |
forward_transform = F.conv1d( | |
input_data.cuda(), | |
torch.autograd.Variable(self.forward_basis, requires_grad=False).cuda(), | |
stride=self.hop_length, | |
padding=0, | |
).cpu() | |
cutoff = int((self.filter_length / 2) + 1) | |
real_part = forward_transform[:, :cutoff, :] | |
imag_part = forward_transform[:, cutoff:, :] | |
magnitude = torch.sqrt(real_part**2 + imag_part**2) | |
phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data)) | |
return magnitude, phase | |
def inverse(self, magnitude, phase): | |
recombine_magnitude_phase = torch.cat( | |
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1 | |
) | |
inverse_transform = F.conv_transpose1d( | |
recombine_magnitude_phase, | |
torch.autograd.Variable(self.inverse_basis, requires_grad=False), | |
stride=self.hop_length, | |
padding=0, | |
) | |
if self.window is not None: | |
window_sum = window_sumsquare( | |
self.window, | |
magnitude.size(-1), | |
hop_length=self.hop_length, | |
win_length=self.win_length, | |
n_fft=self.filter_length, | |
dtype=np.float32, | |
) | |
# remove modulation effects | |
approx_nonzero_indices = torch.from_numpy( | |
np.where(window_sum > tiny(window_sum))[0] | |
) | |
window_sum = torch.autograd.Variable( | |
torch.from_numpy(window_sum), requires_grad=False | |
) | |
window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum | |
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[ | |
approx_nonzero_indices | |
] | |
# scale by hop ratio | |
inverse_transform *= float(self.filter_length) / self.hop_length | |
inverse_transform = inverse_transform[:, :, int(self.filter_length / 2) :] | |
inverse_transform = inverse_transform[:, :, : -int(self.filter_length / 2) :] | |
return inverse_transform | |
def forward(self, input_data): | |
self.magnitude, self.phase = self.transform(input_data) | |
reconstruction = self.inverse(self.magnitude, self.phase) | |
return reconstruction | |
class TacotronSTFT(torch.nn.Module): | |
def __init__( | |
self, | |
filter_length, | |
hop_length, | |
win_length, | |
n_mel_channels, | |
sampling_rate, | |
mel_fmin, | |
mel_fmax, | |
): | |
super(TacotronSTFT, self).__init__() | |
self.n_mel_channels = n_mel_channels | |
self.sampling_rate = sampling_rate | |
self.stft_fn = STFT(filter_length, hop_length, win_length) | |
mel_basis = librosa_mel_fn( | |
sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax | |
) | |
mel_basis = torch.from_numpy(mel_basis).float() | |
self.register_buffer("mel_basis", mel_basis) | |
def spectral_normalize(self, magnitudes): | |
output = dynamic_range_compression(magnitudes) | |
return output | |
def spectral_de_normalize(self, magnitudes): | |
output = dynamic_range_decompression(magnitudes) | |
return output | |
def mel_spectrogram(self, y): | |
"""Computes mel-spectrograms from a batch of waves | |
PARAMS | |
------ | |
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1] | |
RETURNS | |
------- | |
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T) | |
""" | |
assert torch.min(y.data) >= -1 | |
assert torch.max(y.data) <= 1 | |
magnitudes, phases = self.stft_fn.transform(y) | |
magnitudes = magnitudes.data | |
mel_output = torch.matmul(self.mel_basis, magnitudes) | |
mel_output = self.spectral_normalize(mel_output) | |
energy = torch.norm(magnitudes, dim=1) | |
return mel_output, energy | |