Spaces:
Sleeping
Sleeping
File size: 10,290 Bytes
0883aa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).
# ## Citations
# ```bibtex
# @inproceedings{yao2021wenet,
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
# booktitle={Proc. Interspeech},
# year={2021},
# address={Brno, Czech Republic },
# organization={IEEE}
# }
# @article{zhang2022wenet,
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
# journal={arXiv preprint arXiv:2203.15455},
# year={2022}
# }
#
import torch
'''
def subsequent_mask(
size: int,
device: torch.device = torch.device("cpu"),
) -> torch.Tensor:
"""Create mask for subsequent steps (size, size).
This mask is used only in decoder which works in an auto-regressive mode.
This means the current step could only do attention with its left steps.
In encoder, fully attention is used when streaming is not necessary and
the sequence is not long. In this case, no attention mask is needed.
When streaming is need, chunk-based attention is used in encoder. See
subsequent_chunk_mask for the chunk-based attention mask.
Args:
size (int): size of mask
str device (str): "cpu" or "cuda" or torch.Tensor.device
dtype (torch.device): result dtype
Returns:
torch.Tensor: mask
Examples:
>>> subsequent_mask(3)
[[1, 0, 0],
[1, 1, 0],
[1, 1, 1]]
"""
ret = torch.ones(size, size, device=device, dtype=torch.bool)
return torch.tril(ret)
'''
def subsequent_mask(
size: int,
device: torch.device = torch.device("cpu"),
) -> torch.Tensor:
"""Create mask for subsequent steps (size, size).
This mask is used only in decoder which works in an auto-regressive mode.
This means the current step could only do attention with its left steps.
In encoder, fully attention is used when streaming is not necessary and
the sequence is not long. In this case, no attention mask is needed.
When streaming is need, chunk-based attention is used in encoder. See
subsequent_chunk_mask for the chunk-based attention mask.
Args:
size (int): size of mask
str device (str): "cpu" or "cuda" or torch.Tensor.device
dtype (torch.device): result dtype
Returns:
torch.Tensor: mask
Examples:
>>> subsequent_mask(3)
[[1, 0, 0],
[1, 1, 0],
[1, 1, 1]]
"""
arange = torch.arange(size, device=device)
mask = arange.expand(size, size)
arange = arange.unsqueeze(-1)
mask = mask <= arange
return mask
def subsequent_chunk_mask(
size: int,
chunk_size: int,
num_left_chunks: int = -1,
device: torch.device = torch.device("cpu"),
) -> torch.Tensor:
"""Create mask for subsequent steps (size, size) with chunk size,
this is for streaming encoder
Args:
size (int): size of mask
chunk_size (int): size of chunk
num_left_chunks (int): number of left chunks
<0: use full chunk
>=0: use num_left_chunks
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
Returns:
torch.Tensor: mask
Examples:
>>> subsequent_chunk_mask(4, 2)
[[1, 1, 0, 0],
[1, 1, 0, 0],
[1, 1, 1, 1],
[1, 1, 1, 1]]
"""
ret = torch.zeros(size, size, device=device, dtype=torch.bool)
for i in range(size):
if num_left_chunks < 0:
start = 0
else:
start = max((i // chunk_size - num_left_chunks) * chunk_size, 0)
ending = min((i // chunk_size + 1) * chunk_size, size)
ret[i, start:ending] = True
return ret
def add_optional_chunk_mask(
xs: torch.Tensor,
masks: torch.Tensor,
use_dynamic_chunk: bool,
use_dynamic_left_chunk: bool,
decoding_chunk_size: int,
static_chunk_size: int,
num_decoding_left_chunks: int,
):
"""Apply optional mask for encoder.
Args:
xs (torch.Tensor): padded input, (B, L, D), L for max length
mask (torch.Tensor): mask for xs, (B, 1, L)
use_dynamic_chunk (bool): whether to use dynamic chunk or not
use_dynamic_left_chunk (bool): whether to use dynamic left chunk for
training.
decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's
0: default for training, use random dynamic chunk.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
static_chunk_size (int): chunk size for static chunk training/decoding
if it's greater than 0, if use_dynamic_chunk is true,
this parameter will be ignored
num_decoding_left_chunks: number of left chunks, this is for decoding,
the chunk size is decoding_chunk_size.
>=0: use num_decoding_left_chunks
<0: use all left chunks
Returns:
torch.Tensor: chunk mask of the input xs.
"""
# Whether to use chunk mask or not
if use_dynamic_chunk:
max_len = xs.size(1)
if decoding_chunk_size < 0:
chunk_size = max_len
num_left_chunks = -1
elif decoding_chunk_size > 0:
chunk_size = decoding_chunk_size
num_left_chunks = num_decoding_left_chunks
else:
# chunk size is either [1, 25] or full context(max_len).
# Since we use 4 times subsampling and allow up to 1s(100 frames)
# delay, the maximum frame is 100 / 4 = 25.
chunk_size = torch.randint(1, max_len, (1,)).item()
num_left_chunks = -1
if chunk_size > max_len // 2:
chunk_size = max_len
else:
chunk_size = chunk_size % 25 + 1
if use_dynamic_left_chunk:
max_left_chunks = (max_len - 1) // chunk_size
num_left_chunks = torch.randint(0, max_left_chunks, (1,)).item()
chunk_masks = subsequent_chunk_mask(
xs.size(1), chunk_size, num_left_chunks, xs.device
) # (L, L)
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
chunk_masks = masks & chunk_masks # (B, L, L)
elif static_chunk_size > 0:
num_left_chunks = num_decoding_left_chunks
chunk_masks = subsequent_chunk_mask(
xs.size(1), static_chunk_size, num_left_chunks, xs.device
) # (L, L)
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
chunk_masks = masks & chunk_masks # (B, L, L)
else:
chunk_masks = masks
return chunk_masks
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
"""Make mask tensor containing indices of padded part.
See description of make_non_pad_mask.
Args:
lengths (torch.Tensor): Batch of lengths (B,).
Returns:
torch.Tensor: Mask tensor containing indices of padded part.
Examples:
>>> lengths = [5, 3, 2]
>>> make_pad_mask(lengths)
masks = [[0, 0, 0, 0 ,0],
[0, 0, 0, 1, 1],
[0, 0, 1, 1, 1]]
"""
batch_size = lengths.size(0)
max_len = max_len if max_len > 0 else lengths.max().item()
seq_range = torch.arange(0, max_len, dtype=torch.int64, device=lengths.device)
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
seq_length_expand = lengths.unsqueeze(-1)
mask = seq_range_expand >= seq_length_expand
return mask
def make_non_pad_mask(lengths: torch.Tensor) -> torch.Tensor:
"""Make mask tensor containing indices of non-padded part.
The sequences in a batch may have different lengths. To enable
batch computing, padding is need to make all sequence in same
size. To avoid the padding part pass value to context dependent
block such as attention or convolution , this padding part is
masked.
This pad_mask is used in both encoder and decoder.
1 for non-padded part and 0 for padded part.
Args:
lengths (torch.Tensor): Batch of lengths (B,).
Returns:
torch.Tensor: mask tensor containing indices of padded part.
Examples:
>>> lengths = [5, 3, 2]
>>> make_non_pad_mask(lengths)
masks = [[1, 1, 1, 1 ,1],
[1, 1, 1, 0, 0],
[1, 1, 0, 0, 0]]
"""
return ~make_pad_mask(lengths)
def mask_finished_scores(score: torch.Tensor, flag: torch.Tensor) -> torch.Tensor:
"""
If a sequence is finished, we only allow one alive branch. This function
aims to give one branch a zero score and the rest -inf score.
Args:
score (torch.Tensor): A real value array with shape
(batch_size * beam_size, beam_size).
flag (torch.Tensor): A bool array with shape
(batch_size * beam_size, 1).
Returns:
torch.Tensor: (batch_size * beam_size, beam_size).
"""
beam_size = score.size(-1)
zero_mask = torch.zeros_like(flag, dtype=torch.bool)
if beam_size > 1:
unfinished = torch.cat((zero_mask, flag.repeat([1, beam_size - 1])), dim=1)
finished = torch.cat((flag, zero_mask.repeat([1, beam_size - 1])), dim=1)
else:
unfinished = zero_mask
finished = flag
score.masked_fill_(unfinished, -float("inf"))
score.masked_fill_(finished, 0)
return score
def mask_finished_preds(
pred: torch.Tensor, flag: torch.Tensor, eos: int
) -> torch.Tensor:
"""
If a sequence is finished, all of its branch should be <eos>
Args:
pred (torch.Tensor): A int array with shape
(batch_size * beam_size, beam_size).
flag (torch.Tensor): A bool array with shape
(batch_size * beam_size, 1).
Returns:
torch.Tensor: (batch_size * beam_size).
"""
beam_size = pred.size(-1)
finished = flag.repeat([1, beam_size])
return pred.masked_fill_(finished, eos)
|