File size: 7,314 Bytes
df2accb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import os
import re
import time
from pathlib import Path

import torch
from torch.utils.data import DataLoader
from tqdm import tqdm

from models.vocoders.vocoder_inference import synthesis
from torch.utils.data import DataLoader
from utils.util import set_all_random_seed
from utils.util import load_config


def parse_vocoder(vocoder_dir):
    r"""Parse vocoder config"""
    vocoder_dir = os.path.abspath(vocoder_dir)
    ckpt_list = [ckpt for ckpt in Path(vocoder_dir).glob("*.pt")]
    ckpt_list.sort(key=lambda x: int(x.stem), reverse=True)
    ckpt_path = str(ckpt_list[0])
    vocoder_cfg = load_config(os.path.join(vocoder_dir, "args.json"), lowercase=True)
    vocoder_cfg.model.bigvgan = vocoder_cfg.vocoder
    return vocoder_cfg, ckpt_path


class BaseInference(object):
    def __init__(self, cfg, args):
        self.cfg = cfg
        self.args = args
        self.model_type = cfg.model_type
        self.avg_rtf = list()
        set_all_random_seed(10086)
        os.makedirs(args.output_dir, exist_ok=True)

        if torch.cuda.is_available():
            self.device = torch.device("cuda")
        else:
            self.device = torch.device("cpu")
            torch.set_num_threads(10)  # inference on 1 core cpu.

        # Load acoustic model
        self.model = self.create_model().to(self.device)
        state_dict = self.load_state_dict()
        self.load_model(state_dict)
        self.model.eval()

        # Load vocoder model if necessary
        if self.args.checkpoint_dir_vocoder is not None:
            self.get_vocoder_info()

    def create_model(self):
        raise NotImplementedError

    def load_state_dict(self):
        self.checkpoint_file = self.args.checkpoint_file
        if self.checkpoint_file is None:
            assert self.args.checkpoint_dir is not None
            checkpoint_path = os.path.join(self.args.checkpoint_dir, "checkpoint")
            checkpoint_filename = open(checkpoint_path).readlines()[-1].strip()
            self.checkpoint_file = os.path.join(
                self.args.checkpoint_dir, checkpoint_filename
            )

        self.checkpoint_dir = os.path.split(self.checkpoint_file)[0]

        print("Restore acoustic model from {}".format(self.checkpoint_file))
        raw_state_dict = torch.load(self.checkpoint_file, map_location=self.device)
        self.am_restore_step = re.findall(r"step-(.+?)_loss", self.checkpoint_file)[0]

        return raw_state_dict

    def load_model(self, model):
        raise NotImplementedError

    def get_vocoder_info(self):
        self.checkpoint_dir_vocoder = self.args.checkpoint_dir_vocoder
        self.vocoder_cfg = os.path.join(
            os.path.dirname(self.checkpoint_dir_vocoder), "args.json"
        )
        self.cfg.vocoder = load_config(self.vocoder_cfg, lowercase=True)
        self.vocoder_tag = self.checkpoint_dir_vocoder.split("/")[-2].split(":")[-1]
        self.vocoder_steps = self.checkpoint_dir_vocoder.split("/")[-1].split(".")[0]

    def build_test_utt_data(self):
        raise NotImplementedError

    def build_testdata_loader(self, args, target_speaker=None):
        datasets, collate = self.build_test_dataset()
        self.test_dataset = datasets(self.cfg, args, target_speaker)
        self.test_collate = collate(self.cfg)
        self.test_batch_size = min(
            self.cfg.train.batch_size, len(self.test_dataset.metadata)
        )
        test_loader = DataLoader(
            self.test_dataset,
            collate_fn=self.test_collate,
            num_workers=self.args.num_workers,
            batch_size=self.test_batch_size,
            shuffle=False,
        )
        return test_loader

    def inference_each_batch(self, batch_data):
        raise NotImplementedError

    def inference_for_batches(self, args, target_speaker=None):
        ###### Construct test_batch ######
        loader = self.build_testdata_loader(args, target_speaker)

        n_batch = len(loader)
        now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(
            "Model eval time: {}, batch_size = {}, n_batch = {}".format(
                now, self.test_batch_size, n_batch
            )
        )
        self.model.eval()

        ###### Inference for each batch ######
        pred_res = []
        with torch.no_grad():
            for i, batch_data in enumerate(loader if n_batch == 1 else tqdm(loader)):
                # Put the data to device
                for k, v in batch_data.items():
                    batch_data[k] = batch_data[k].to(self.device)

                y_pred, stats = self.inference_each_batch(batch_data)

                pred_res += y_pred

        return pred_res

    def inference(self, feature):
        raise NotImplementedError

    def synthesis_by_vocoder(self, pred):
        audios_pred = synthesis(
            self.vocoder_cfg,
            self.checkpoint_dir_vocoder,
            len(pred),
            pred,
        )
        return audios_pred

    def __call__(self, utt):
        feature = self.build_test_utt_data(utt)
        start_time = time.time()
        with torch.no_grad():
            outputs = self.inference(feature)[0]
        time_used = time.time() - start_time
        rtf = time_used / (
            outputs.shape[1]
            * self.cfg.preprocess.hop_size
            / self.cfg.preprocess.sample_rate
        )
        print("Time used: {:.3f}, RTF: {:.4f}".format(time_used, rtf))
        self.avg_rtf.append(rtf)
        audios = outputs.cpu().squeeze().numpy().reshape(-1, 1)
        return audios


def base_parser():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--config", default="config.json", help="json files for configurations."
    )
    parser.add_argument("--use_ddp_inference", default=False)
    parser.add_argument("--n_workers", default=1, type=int)
    parser.add_argument("--local_rank", default=-1, type=int)
    parser.add_argument(
        "--batch_size", default=1, type=int, help="Batch size for inference"
    )
    parser.add_argument(
        "--num_workers",
        default=1,
        type=int,
        help="Worker number for inference dataloader",
    )
    parser.add_argument(
        "--checkpoint_dir",
        type=str,
        default=None,
        help="Checkpoint dir including model file and configuration",
    )
    parser.add_argument(
        "--checkpoint_file", help="checkpoint file", type=str, default=None
    )
    parser.add_argument(
        "--test_list", help="test utterance list for testing", type=str, default=None
    )
    parser.add_argument(
        "--checkpoint_dir_vocoder",
        help="Vocoder's checkpoint dir including model file and configuration",
        type=str,
        default=None,
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default=None,
        help="Output dir for saving generated results",
    )
    return parser


if __name__ == "__main__":
    parser = base_parser()
    args = parser.parse_args()
    cfg = load_config(args.config)

    # Build inference
    inference = BaseInference(cfg, args)
    inference()