File size: 24,927 Bytes
df2accb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# This code is modified from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/training/python/training/hparam.py  pylint: disable=line-too-long
"""Hyperparameter values."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import numbers
import re
import six

# Define the regular expression for parsing a single clause of the input
# (delimited by commas).  A legal clause looks like:
#   <variable name>[<index>]? = <rhs>
# where <rhs> is either a single token or [] enclosed list of tokens.
# For example:  "var[1] = a" or "x = [1,2,3]"
PARAM_RE = re.compile(
    r"""
  (?P<name>[a-zA-Z][\w\.]*)      # variable name: "var" or "x"
  (\[\s*(?P<index>\d+)\s*\])?  # (optional) index: "1" or None
  \s*=\s*
  ((?P<val>[^,\[]*)            # single value: "a" or None
   |
   \[(?P<vals>[^\]]*)\])       # list of values: None or "1,2,3"
  ($|,\s*)""",
    re.VERBOSE,
)


def _parse_fail(name, var_type, value, values):
    """Helper function for raising a value error for bad assignment."""
    raise ValueError(
        "Could not parse hparam '%s' of type '%s' with value '%s' in %s"
        % (name, var_type.__name__, value, values)
    )


def _reuse_fail(name, values):
    """Helper function for raising a value error for reuse of name."""
    raise ValueError("Multiple assignments to variable '%s' in %s" % (name, values))


def _process_scalar_value(name, parse_fn, var_type, m_dict, values, results_dictionary):
    """Update results_dictionary with a scalar value.

    Used to update the results_dictionary to be returned by parse_values when
    encountering a clause with a scalar RHS (e.g.  "s=5" or "arr[0]=5".)

    Mutates results_dictionary.

    Args:
      name: Name of variable in assignment ("s" or "arr").
      parse_fn: Function for parsing the actual value.
      var_type: Type of named variable.
      m_dict: Dictionary constructed from regex parsing.
        m_dict['val']: RHS value (scalar)
        m_dict['index']: List index value (or None)
      values: Full expression being parsed
      results_dictionary: The dictionary being updated for return by the parsing
        function.

    Raises:
      ValueError: If the name has already been used.
    """
    try:
        parsed_value = parse_fn(m_dict["val"])
    except ValueError:
        _parse_fail(name, var_type, m_dict["val"], values)

    # If no index is provided
    if not m_dict["index"]:
        if name in results_dictionary:
            _reuse_fail(name, values)
        results_dictionary[name] = parsed_value
    else:
        if name in results_dictionary:
            # The name has already been used as a scalar, then it
            # will be in this dictionary and map to a non-dictionary.
            if not isinstance(results_dictionary.get(name), dict):
                _reuse_fail(name, values)
        else:
            results_dictionary[name] = {}

        index = int(m_dict["index"])
        # Make sure the index position hasn't already been assigned a value.
        if index in results_dictionary[name]:
            _reuse_fail("{}[{}]".format(name, index), values)
        results_dictionary[name][index] = parsed_value


def _process_list_value(name, parse_fn, var_type, m_dict, values, results_dictionary):
    """Update results_dictionary from a list of values.

    Used to update results_dictionary to be returned by parse_values when
    encountering a clause with a list RHS (e.g.  "arr=[1,2,3]".)

    Mutates results_dictionary.

    Args:
      name: Name of variable in assignment ("arr").
      parse_fn: Function for parsing individual values.
      var_type: Type of named variable.
      m_dict: Dictionary constructed from regex parsing.
        m_dict['val']: RHS value (scalar)
      values: Full expression being parsed
      results_dictionary: The dictionary being updated for return by the parsing
        function.

    Raises:
      ValueError: If the name has an index or the values cannot be parsed.
    """
    if m_dict["index"] is not None:
        raise ValueError("Assignment of a list to a list index.")
    elements = filter(None, re.split("[ ,]", m_dict["vals"]))
    # Make sure the name hasn't already been assigned a value
    if name in results_dictionary:
        raise _reuse_fail(name, values)
    try:
        results_dictionary[name] = [parse_fn(e) for e in elements]
    except ValueError:
        _parse_fail(name, var_type, m_dict["vals"], values)


def _cast_to_type_if_compatible(name, param_type, value):
    """Cast hparam to the provided type, if compatible.

    Args:
      name: Name of the hparam to be cast.
      param_type: The type of the hparam.
      value: The value to be cast, if compatible.

    Returns:
      The result of casting `value` to `param_type`.

    Raises:
      ValueError: If the type of `value` is not compatible with param_type.
        * If `param_type` is a string type, but `value` is not.
        * If `param_type` is a boolean, but `value` is not, or vice versa.
        * If `param_type` is an integer type, but `value` is not.
        * If `param_type` is a float type, but `value` is not a numeric type.
    """
    fail_msg = "Could not cast hparam '%s' of type '%s' from value %r" % (
        name,
        param_type,
        value,
    )

    # Some callers use None, for which we can't do any casting/checking. :(
    if issubclass(param_type, type(None)):
        return value

    # Avoid converting a non-string type to a string.
    if issubclass(param_type, (six.string_types, six.binary_type)) and not isinstance(
        value, (six.string_types, six.binary_type)
    ):
        raise ValueError(fail_msg)

    # Avoid converting a number or string type to a boolean or vice versa.
    if issubclass(param_type, bool) != isinstance(value, bool):
        raise ValueError(fail_msg)

    # Avoid converting float to an integer (the reverse is fine).
    if issubclass(param_type, numbers.Integral) and not isinstance(
        value, numbers.Integral
    ):
        raise ValueError(fail_msg)

    # Avoid converting a non-numeric type to a numeric type.
    if issubclass(param_type, numbers.Number) and not isinstance(value, numbers.Number):
        raise ValueError(fail_msg)

    return param_type(value)


def parse_values(values, type_map, ignore_unknown=False):
    """Parses hyperparameter values from a string into a python map.

    `values` is a string containing comma-separated `name=value` pairs.
    For each pair, the value of the hyperparameter named `name` is set to
    `value`.

    If a hyperparameter name appears multiple times in `values`, a ValueError
    is raised (e.g. 'a=1,a=2', 'a[1]=1,a[1]=2').

    If a hyperparameter name in both an index assignment and scalar assignment,
    a ValueError is raised.  (e.g. 'a=[1,2,3],a[0] = 1').

    The hyperparameter name may contain '.' symbols, which will result in an
    attribute name that is only accessible through the getattr and setattr
    functions.  (And must be first explicit added through add_hparam.)

    WARNING: Use of '.' in your variable names is allowed, but is not well
    supported and not recommended.

    The `value` in `name=value` must follows the syntax according to the
    type of the parameter:

    *  Scalar integer: A Python-parsable integer point value.  E.g.: 1,
       100, -12.
    *  Scalar float: A Python-parsable floating point value.  E.g.: 1.0,
       -.54e89.
    *  Boolean: Either true or false.
    *  Scalar string: A non-empty sequence of characters, excluding comma,
       spaces, and square brackets.  E.g.: foo, bar_1.
    *  List: A comma separated list of scalar values of the parameter type
       enclosed in square brackets.  E.g.: [1,2,3], [1.0,1e-12], [high,low].

    When index assignment is used, the corresponding type_map key should be the
    list name.  E.g. for "arr[1]=0" the type_map must have the key "arr" (not
    "arr[1]").

    Args:
      values: String.  Comma separated list of `name=value` pairs where
        'value' must follow the syntax described above.
      type_map: A dictionary mapping hyperparameter names to types.  Note every
        parameter name in values must be a key in type_map.  The values must
        conform to the types indicated, where a value V is said to conform to a
        type T if either V has type T, or V is a list of elements of type T.
        Hence, for a multidimensional parameter 'x' taking float values,
        'x=[0.1,0.2]' will parse successfully if type_map['x'] = float.
      ignore_unknown: Bool. Whether values that are missing a type in type_map
        should be ignored. If set to True, a ValueError will not be raised for
        unknown hyperparameter type.

    Returns:
      A python map mapping each name to either:
      * A scalar value.
      * A list of scalar values.
      * A dictionary mapping index numbers to scalar values.
      (e.g. "x=5,L=[1,2],arr[1]=3" results in {'x':5,'L':[1,2],'arr':{1:3}}")

    Raises:
      ValueError: If there is a problem with input.
      * If `values` cannot be parsed.
      * If a list is assigned to a list index (e.g. 'a[1] = [1,2,3]').
      * If the same rvalue is assigned two different values (e.g. 'a=1,a=2',
        'a[1]=1,a[1]=2', or 'a=1,a=[1]')
    """
    results_dictionary = {}
    pos = 0
    while pos < len(values):
        m = PARAM_RE.match(values, pos)
        if not m:
            raise ValueError("Malformed hyperparameter value: %s" % values[pos:])
        # Check that there is a comma between parameters and move past it.
        pos = m.end()
        # Parse the values.
        m_dict = m.groupdict()
        name = m_dict["name"]
        if name not in type_map:
            if ignore_unknown:
                continue
            raise ValueError("Unknown hyperparameter type for %s" % name)
        type_ = type_map[name]

        # Set up correct parsing function (depending on whether type_ is a bool)
        if type_ == bool:

            def parse_bool(value):
                if value in ["true", "True"]:
                    return True
                elif value in ["false", "False"]:
                    return False
                else:
                    try:
                        return bool(int(value))
                    except ValueError:
                        _parse_fail(name, type_, value, values)

            parse = parse_bool
        else:
            parse = type_

        # If a singe value is provided
        if m_dict["val"] is not None:
            _process_scalar_value(
                name, parse, type_, m_dict, values, results_dictionary
            )

        # If the assigned value is a list:
        elif m_dict["vals"] is not None:
            _process_list_value(name, parse, type_, m_dict, values, results_dictionary)

        else:  # Not assigned a list or value
            _parse_fail(name, type_, "", values)

    return results_dictionary


class HParams(object):
    """Class to hold a set of hyperparameters as name-value pairs.

    A `HParams` object holds hyperparameters used to build and train a model,
    such as the number of hidden units in a neural net layer or the learning rate
    to use when training.

    You first create a `HParams` object by specifying the names and values of the
    hyperparameters.

    To make them easily accessible the parameter names are added as direct
    attributes of the class.  A typical usage is as follows:

    ```python
    # Create a HParams object specifying names and values of the model
    # hyperparameters:
    hparams = HParams(learning_rate=0.1, num_hidden_units=100)

    # The hyperparameter are available as attributes of the HParams object:
    hparams.learning_rate ==> 0.1
    hparams.num_hidden_units ==> 100
    ```

    Hyperparameters have type, which is inferred from the type of their value
    passed at construction type.   The currently supported types are: integer,
    float, boolean, string, and list of integer, float, boolean, or string.

    You can override hyperparameter values by calling the
    [`parse()`](#HParams.parse) method, passing a string of comma separated
    `name=value` pairs.  This is intended to make it possible to override
    any hyperparameter values from a single command-line flag to which
    the user passes 'hyper-param=value' pairs.  It avoids having to define
    one flag for each hyperparameter.

    The syntax expected for each value depends on the type of the parameter.
    See `parse()` for a description of the syntax.

    Example:

    ```python
    # Define a command line flag to pass name=value pairs.
    # For example using argparse:
    import argparse
    parser = argparse.ArgumentParser(description='Train my model.')
    parser.add_argument('--hparams', type=str,
                        help='Comma separated list of "name=value" pairs.')
    args = parser.parse_args()
    ...
    def my_program():
      # Create a HParams object specifying the names and values of the
      # model hyperparameters:
      hparams = tf.HParams(learning_rate=0.1, num_hidden_units=100,
                           activations=['relu', 'tanh'])

      # Override hyperparameters values by parsing the command line
      hparams.parse(args.hparams)

      # If the user passed `--hparams=learning_rate=0.3` on the command line
      # then 'hparams' has the following attributes:
      hparams.learning_rate ==> 0.3
      hparams.num_hidden_units ==> 100
      hparams.activations ==> ['relu', 'tanh']

      # If the hyperparameters are in json format use parse_json:
      hparams.parse_json('{"learning_rate": 0.3, "activations": "relu"}')
    ```
    """

    _HAS_DYNAMIC_ATTRIBUTES = True  # Required for pytype checks.

    def __init__(self, model_structure=None, **kwargs):
        """Create an instance of `HParams` from keyword arguments.

        The keyword arguments specify name-values pairs for the hyperparameters.
        The parameter types are inferred from the type of the values passed.

        The parameter names are added as attributes of `HParams` object, so they
        can be accessed directly with the dot notation `hparams._name_`.

        Example:

        ```python
        # Define 3 hyperparameters: 'learning_rate' is a float parameter,
        # 'num_hidden_units' an integer parameter, and 'activation' a string
        # parameter.
        hparams = tf.HParams(
            learning_rate=0.1, num_hidden_units=100, activation='relu')

        hparams.activation ==> 'relu'
        ```

        Note that a few names are reserved and cannot be used as hyperparameter
        names.  If you use one of the reserved name the constructor raises a
        `ValueError`.

        Args:
          model_structure: An instance of ModelStructure, defining the feature
            crosses to be used in the Trial.
          **kwargs: Key-value pairs where the key is the hyperparameter name and
            the value is the value for the parameter.

        Raises:
          ValueError: If both `hparam_def` and initialization values are provided,
            or if one of the arguments is invalid.

        """
        # Register the hyperparameters and their type in _hparam_types.
        # This simplifies the implementation of parse().
        # _hparam_types maps the parameter name to a tuple (type, bool).
        # The type value is the type of the parameter for scalar hyperparameters,
        # or the type of the list elements for multidimensional hyperparameters.
        # The bool value is True if the value is a list, False otherwise.
        self._hparam_types = {}
        self._model_structure = model_structure
        for name, value in six.iteritems(kwargs):
            self.add_hparam(name, value)

    def add_hparam(self, name, value):
        """Adds {name, value} pair to hyperparameters.

        Args:
          name: Name of the hyperparameter.
          value: Value of the hyperparameter. Can be one of the following types:
            int, float, string, int list, float list, or string list.

        Raises:
          ValueError: if one of the arguments is invalid.
        """
        # Keys in kwargs are unique, but 'name' could the name of a pre-existing
        # attribute of this object.  In that case we refuse to use it as a
        # hyperparameter name.
        if getattr(self, name, None) is not None:
            raise ValueError("Hyperparameter name is reserved: %s" % name)
        if isinstance(value, (list, tuple)):
            if not value:
                raise ValueError(
                    "Multi-valued hyperparameters cannot be empty: %s" % name
                )
            self._hparam_types[name] = (type(value[0]), True)
        else:
            self._hparam_types[name] = (type(value), False)
        setattr(self, name, value)

    def set_hparam(self, name, value):
        """Set the value of an existing hyperparameter.

        This function verifies that the type of the value matches the type of the
        existing hyperparameter.

        Args:
          name: Name of the hyperparameter.
          value: New value of the hyperparameter.

        Raises:
          KeyError: If the hyperparameter doesn't exist.
          ValueError: If there is a type mismatch.
        """
        param_type, is_list = self._hparam_types[name]
        if isinstance(value, list):
            if not is_list:
                raise ValueError(
                    "Must not pass a list for single-valued parameter: %s" % name
                )
            setattr(
                self,
                name,
                [_cast_to_type_if_compatible(name, param_type, v) for v in value],
            )
        else:
            if is_list:
                raise ValueError(
                    "Must pass a list for multi-valued parameter: %s." % name
                )
            setattr(self, name, _cast_to_type_if_compatible(name, param_type, value))

    def del_hparam(self, name):
        """Removes the hyperparameter with key 'name'.

        Does nothing if it isn't present.

        Args:
          name: Name of the hyperparameter.
        """
        if hasattr(self, name):
            delattr(self, name)
            del self._hparam_types[name]

    def parse(self, values):
        """Override existing hyperparameter values, parsing new values from a string.

        See parse_values for more detail on the allowed format for values.

        Args:
          values: String.  Comma separated list of `name=value` pairs where 'value'
            must follow the syntax described above.

        Returns:
          The `HParams` instance.

        Raises:
          ValueError: If `values` cannot be parsed or a hyperparameter in `values`
          doesn't exist.
        """
        type_map = {}
        for name, t in self._hparam_types.items():
            param_type, _ = t
            type_map[name] = param_type

        values_map = parse_values(values, type_map)
        return self.override_from_dict(values_map)

    def override_from_dict(self, values_dict):
        """Override existing hyperparameter values, parsing new values from a dictionary.

        Args:
          values_dict: Dictionary of name:value pairs.

        Returns:
          The `HParams` instance.

        Raises:
          KeyError: If a hyperparameter in `values_dict` doesn't exist.
          ValueError: If `values_dict` cannot be parsed.
        """
        for name, value in values_dict.items():
            self.set_hparam(name, value)
        return self

    def set_model_structure(self, model_structure):
        self._model_structure = model_structure

    def get_model_structure(self):
        return self._model_structure

    def to_json(self, indent=None, separators=None, sort_keys=False):
        """Serializes the hyperparameters into JSON.

        Args:
          indent: If a non-negative integer, JSON array elements and object members
            will be pretty-printed with that indent level. An indent level of 0, or
            negative, will only insert newlines. `None` (the default) selects the
            most compact representation.
          separators: Optional `(item_separator, key_separator)` tuple. Default is
            `(', ', ': ')`.
          sort_keys: If `True`, the output dictionaries will be sorted by key.

        Returns:
          A JSON string.
        """

        def remove_callables(x):
            """Omit callable elements from input with arbitrary nesting."""
            if isinstance(x, dict):
                return {
                    k: remove_callables(v)
                    for k, v in six.iteritems(x)
                    if not callable(v)
                }
            elif isinstance(x, list):
                return [remove_callables(i) for i in x if not callable(i)]
            return x

        return json.dumps(
            remove_callables(self.values()),
            indent=indent,
            separators=separators,
            sort_keys=sort_keys,
        )

    def parse_json(self, values_json):
        """Override existing hyperparameter values, parsing new values from a json object.

        Args:
          values_json: String containing a json object of name:value pairs.

        Returns:
          The `HParams` instance.

        Raises:
          KeyError: If a hyperparameter in `values_json` doesn't exist.
          ValueError: If `values_json` cannot be parsed.
        """
        values_map = json.loads(values_json)
        return self.override_from_dict(values_map)

    def values(self):
        """Return the hyperparameter values as a Python dictionary.

        Returns:
          A dictionary with hyperparameter names as keys.  The values are the
          hyperparameter values.
        """
        return {n: getattr(self, n) for n in self._hparam_types.keys()}

    def get(self, key, default=None):
        """Returns the value of `key` if it exists, else `default`."""
        if key in self._hparam_types:
            # Ensure that default is compatible with the parameter type.
            if default is not None:
                param_type, is_param_list = self._hparam_types[key]
                type_str = "list<%s>" % param_type if is_param_list else str(param_type)
                fail_msg = (
                    "Hparam '%s' of type '%s' is incompatible with "
                    "default=%s" % (key, type_str, default)
                )

                is_default_list = isinstance(default, list)
                if is_param_list != is_default_list:
                    raise ValueError(fail_msg)

                try:
                    if is_default_list:
                        for value in default:
                            _cast_to_type_if_compatible(key, param_type, value)
                    else:
                        _cast_to_type_if_compatible(key, param_type, default)
                except ValueError as e:
                    raise ValueError("%s. %s" % (fail_msg, e))

            return getattr(self, key)

        return default

    def __contains__(self, key):
        return key in self._hparam_types

    def __str__(self):
        return str(sorted(self.values().items()))

    def __repr__(self):
        return "%s(%s)" % (type(self).__name__, self.__str__())

    @staticmethod
    def _get_kind_name(param_type, is_list):
        """Returns the field name given parameter type and is_list.

        Args:
          param_type: Data type of the hparam.
          is_list: Whether this is a list.

        Returns:
          A string representation of the field name.

        Raises:
          ValueError: If parameter type is not recognized.
        """
        if issubclass(param_type, bool):
            # This check must happen before issubclass(param_type, six.integer_types),
            # since Python considers bool to be a subclass of int.
            typename = "bool"
        elif issubclass(param_type, six.integer_types):
            # Setting 'int' and 'long' types to be 'int64' to ensure the type is
            # compatible with both Python2 and Python3.
            typename = "int64"
        elif issubclass(param_type, (six.string_types, six.binary_type)):
            # Setting 'string' and 'bytes' types to be 'bytes' to ensure the type is
            # compatible with both Python2 and Python3.
            typename = "bytes"
        elif issubclass(param_type, float):
            typename = "float"
        else:
            raise ValueError("Unsupported parameter type: %s" % str(param_type))

        suffix = "list" if is_list else "value"
        return "_".join([typename, suffix])