File size: 3,939 Bytes
df2accb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
{
    "base_config": "config/diffusion.json",
    "model_type": "DiffWaveNetSVC",
    "dataset": [
        "m4singer",
        "opencpop",
        "opensinger",
        "svcc",
        "vctk"
    ],
    "dataset_path": {
        // TODO: Fill in your dataset path
        "m4singer": "[M4Singer dataset path]",
        "opencpop": "[Opencpop dataset path]",
        "opensinger": "[OpenSinger dataset path]",
        "svcc": "[SVCC dataset path]",
        "vctk": "[VCTK dataset path]"
    },
    // TODO: Fill in the output log path. The default value is "Amphion/ckpts/svc"
    "log_dir": "ckpts/svc",
    "preprocess": {
        // TODO: Fill in the output data path. The default value is "Amphion/data"
        "processed_dir": "data",
        // Config for features extraction
        "extract_mel": true,
        "extract_pitch": true,
        "extract_energy": true,
        "extract_whisper_feature": true,
        "extract_contentvec_feature": true,
        "extract_wenet_feature": false,
        "whisper_batch_size": 30, // decrease it if your GPU is out of memory
        "contentvec_batch_size": 1,
        // Fill in the content-based pretrained model's path
        "contentvec_file": "pretrained/contentvec/checkpoint_best_legacy_500.pt",
        "wenet_model_path": "pretrained/wenet/20220506_u2pp_conformer_exp/final.pt",
        "wenet_config": "pretrained/wenet/20220506_u2pp_conformer_exp/train.yaml",
        "whisper_model": "medium",
        "whisper_model_path": "pretrained/whisper/medium.pt",
        // Config for features usage
        "use_mel": true,
        "use_min_max_norm_mel": true,
        "use_frame_pitch": true,
        "use_frame_energy": true,
        "use_spkid": true,
        "use_whisper": true,
        "use_contentvec": true,
        "use_wenet": false,
        "n_mel": 100,
        "sample_rate": 24000
    },
    "model": {
        "condition_encoder": {
            // Config for features usage
            "use_whisper": true,
            "use_contentvec": true,
            "use_wenet": false,
            "whisper_dim": 1024,
            "contentvec_dim": 256,
            "wenet_dim": 512,
            "use_singer_encoder": false,
            "pitch_min": 50,
            "pitch_max": 1100
        },
        "diffusion": {
            "scheduler": "ddpm",
            "scheduler_settings": {
                "num_train_timesteps": 1000,
                "beta_start": 1.0e-4,
                "beta_end": 0.02,
                "beta_schedule": "linear"
            },
            // Diffusion steps encoder
            "step_encoder": {
                "dim_raw_embedding": 128,
                "dim_hidden_layer": 512,
                "activation": "SiLU",
                "num_layer": 2,
                "max_period": 10000
            },
            // Diffusion decoder
            "model_type": "bidilconv",
            // bidilconv, unet2d, TODO: unet1d
            "bidilconv": {
                "base_channel": 512,
                "n_res_block": 40,
                "conv_kernel_size": 3,
                "dilation_cycle_length": 4,
                // specially, 1 means no dilation
                "conditioner_size": 384
            }
        }
    },
    "train": {
        "batch_size": 32,
        "gradient_accumulation_step": 1,
        "max_epoch": -1, // -1 means no limit
        "save_checkpoint_stride": [
            3,
            50
        ],
        "keep_last": [
            3,
            2
        ],
        "run_eval": [
            true,
            true
        ],
        "adamw": {
            "lr": 2.0e-4
        },
        "reducelronplateau": {
            "factor": 0.8,
            "patience": 30,
            "min_lr": 1.0e-4
        },
        "dataloader": {
            "num_worker": 8,
            "pin_memory": true
        },
        "sampler": {
            "holistic_shuffle": false,
            "drop_last": true
        }
    }
}