File size: 26,717 Bytes
b725c5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).

# ## Citations

# ```bibtex
# @inproceedings{yao2021wenet,
#   title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
#   author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
#   booktitle={Proc. Interspeech},
#   year={2021},
#   address={Brno, Czech Republic },
#   organization={IEEE}
# }

# @article{zhang2022wenet,
#   title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
#   author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
#   journal={arXiv preprint arXiv:2203.15455},
#   year={2022}
# }
#

"""Encoder definition."""
from typing import Tuple, Optional, List, Union

import torch
import logging
import torch.nn.functional as F

from modules.wenet_extractor.transformer.positionwise_feed_forward import (
    PositionwiseFeedForward,
)
from modules.wenet_extractor.transformer.embedding import PositionalEncoding
from modules.wenet_extractor.transformer.embedding import RelPositionalEncoding
from modules.wenet_extractor.transformer.embedding import NoPositionalEncoding
from modules.wenet_extractor.transformer.subsampling import Conv2dSubsampling4
from modules.wenet_extractor.transformer.subsampling import Conv2dSubsampling6
from modules.wenet_extractor.transformer.subsampling import Conv2dSubsampling8
from modules.wenet_extractor.transformer.subsampling import LinearNoSubsampling
from modules.wenet_extractor.transformer.attention import MultiHeadedAttention
from modules.wenet_extractor.transformer.attention import (
    RelPositionMultiHeadedAttention,
)
from modules.wenet_extractor.transformer.encoder_layer import ConformerEncoderLayer

from modules.wenet_extractor.efficient_conformer.subsampling import Conv2dSubsampling2
from modules.wenet_extractor.efficient_conformer.convolution import ConvolutionModule
from modules.wenet_extractor.efficient_conformer.attention import (
    GroupedRelPositionMultiHeadedAttention,
)
from modules.wenet_extractor.efficient_conformer.encoder_layer import (
    StrideConformerEncoderLayer,
)

from modules.wenet_extractor.utils.common import get_activation
from modules.wenet_extractor.utils.mask import make_pad_mask
from modules.wenet_extractor.utils.mask import add_optional_chunk_mask


class EfficientConformerEncoder(torch.nn.Module):
    """Conformer encoder module."""

    def __init__(
        self,
        input_size: int,
        output_size: int = 256,
        attention_heads: int = 4,
        linear_units: int = 2048,
        num_blocks: int = 6,
        dropout_rate: float = 0.1,
        positional_dropout_rate: float = 0.1,
        attention_dropout_rate: float = 0.0,
        input_layer: str = "conv2d",
        pos_enc_layer_type: str = "rel_pos",
        normalize_before: bool = True,
        static_chunk_size: int = 0,
        use_dynamic_chunk: bool = False,
        global_cmvn: torch.nn.Module = None,
        use_dynamic_left_chunk: bool = False,
        macaron_style: bool = True,
        activation_type: str = "swish",
        use_cnn_module: bool = True,
        cnn_module_kernel: int = 15,
        causal: bool = False,
        cnn_module_norm: str = "batch_norm",
        stride_layer_idx: Optional[Union[int, List[int]]] = 3,
        stride: Optional[Union[int, List[int]]] = 2,
        group_layer_idx: Optional[Union[int, List[int], tuple]] = (0, 1, 2, 3),
        group_size: int = 3,
        stride_kernel: bool = True,
        **kwargs,
    ):
        """Construct Efficient Conformer Encoder

        Args:
            input_size to use_dynamic_chunk, see in BaseEncoder
            macaron_style (bool): Whether to use macaron style for
                positionwise layer.
            activation_type (str): Encoder activation function type.
            use_cnn_module (bool): Whether to use convolution module.
            cnn_module_kernel (int): Kernel size of convolution module.
            causal (bool): whether to use causal convolution or not.
            stride_layer_idx (list): layer id with StrideConv, start from 0
            stride (list): stride size of each StrideConv in efficient conformer
            group_layer_idx (list): layer id with GroupedAttention, start from 0
            group_size (int): group size of every GroupedAttention layer
            stride_kernel (bool): default True. True: recompute cnn kernels with stride.
        """
        super().__init__()
        self._output_size = output_size

        if pos_enc_layer_type == "abs_pos":
            pos_enc_class = PositionalEncoding
        elif pos_enc_layer_type == "rel_pos":
            pos_enc_class = RelPositionalEncoding
        elif pos_enc_layer_type == "no_pos":
            pos_enc_class = NoPositionalEncoding
        else:
            raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type)

        if input_layer == "linear":
            subsampling_class = LinearNoSubsampling
        elif input_layer == "conv2d2":
            subsampling_class = Conv2dSubsampling2
        elif input_layer == "conv2d":
            subsampling_class = Conv2dSubsampling4
        elif input_layer == "conv2d6":
            subsampling_class = Conv2dSubsampling6
        elif input_layer == "conv2d8":
            subsampling_class = Conv2dSubsampling8
        else:
            raise ValueError("unknown input_layer: " + input_layer)

        logging.info(
            f"input_layer = {input_layer}, " f"subsampling_class = {subsampling_class}"
        )

        self.global_cmvn = global_cmvn
        self.embed = subsampling_class(
            input_size,
            output_size,
            dropout_rate,
            pos_enc_class(output_size, positional_dropout_rate),
        )
        self.input_layer = input_layer
        self.normalize_before = normalize_before
        self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
        self.static_chunk_size = static_chunk_size
        self.use_dynamic_chunk = use_dynamic_chunk
        self.use_dynamic_left_chunk = use_dynamic_left_chunk

        activation = get_activation(activation_type)
        self.num_blocks = num_blocks
        self.attention_heads = attention_heads
        self.cnn_module_kernel = cnn_module_kernel
        self.global_chunk_size = 0
        self.chunk_feature_map = 0

        # efficient conformer configs
        self.stride_layer_idx = (
            [stride_layer_idx] if type(stride_layer_idx) == int else stride_layer_idx
        )
        self.stride = [stride] if type(stride) == int else stride
        self.group_layer_idx = (
            [group_layer_idx] if type(group_layer_idx) == int else group_layer_idx
        )
        self.grouped_size = group_size  # group size of every GroupedAttention layer

        assert len(self.stride) == len(self.stride_layer_idx)
        self.cnn_module_kernels = [cnn_module_kernel]  # kernel size of each StridedConv
        for i in self.stride:
            if stride_kernel:
                self.cnn_module_kernels.append(self.cnn_module_kernels[-1] // i)
            else:
                self.cnn_module_kernels.append(self.cnn_module_kernels[-1])

        logging.info(
            f"stride_layer_idx= {self.stride_layer_idx}, "
            f"stride = {self.stride}, "
            f"cnn_module_kernel = {self.cnn_module_kernels}, "
            f"group_layer_idx = {self.group_layer_idx}, "
            f"grouped_size = {self.grouped_size}"
        )

        # feed-forward module definition
        positionwise_layer = PositionwiseFeedForward
        positionwise_layer_args = (
            output_size,
            linear_units,
            dropout_rate,
            activation,
        )
        # convolution module definition
        convolution_layer = ConvolutionModule

        # encoder definition
        index = 0
        layers = []
        for i in range(num_blocks):
            # self-attention module definition
            if i in self.group_layer_idx:
                encoder_selfattn_layer = GroupedRelPositionMultiHeadedAttention
                encoder_selfattn_layer_args = (
                    attention_heads,
                    output_size,
                    attention_dropout_rate,
                    self.grouped_size,
                )
            else:
                if pos_enc_layer_type == "no_pos":
                    encoder_selfattn_layer = MultiHeadedAttention
                else:
                    encoder_selfattn_layer = RelPositionMultiHeadedAttention
                encoder_selfattn_layer_args = (
                    attention_heads,
                    output_size,
                    attention_dropout_rate,
                )

            # conformer module definition
            if i in self.stride_layer_idx:
                # conformer block with downsampling
                convolution_layer_args_stride = (
                    output_size,
                    self.cnn_module_kernels[index],
                    activation,
                    cnn_module_norm,
                    causal,
                    True,
                    self.stride[index],
                )
                layers.append(
                    StrideConformerEncoderLayer(
                        output_size,
                        encoder_selfattn_layer(*encoder_selfattn_layer_args),
                        positionwise_layer(*positionwise_layer_args),
                        positionwise_layer(*positionwise_layer_args)
                        if macaron_style
                        else None,
                        convolution_layer(*convolution_layer_args_stride)
                        if use_cnn_module
                        else None,
                        torch.nn.AvgPool1d(
                            kernel_size=self.stride[index],
                            stride=self.stride[index],
                            padding=0,
                            ceil_mode=True,
                            count_include_pad=False,
                        ),  # pointwise_conv_layer
                        dropout_rate,
                        normalize_before,
                    )
                )
                index = index + 1
            else:
                # conformer block
                convolution_layer_args_normal = (
                    output_size,
                    self.cnn_module_kernels[index],
                    activation,
                    cnn_module_norm,
                    causal,
                )
                layers.append(
                    ConformerEncoderLayer(
                        output_size,
                        encoder_selfattn_layer(*encoder_selfattn_layer_args),
                        positionwise_layer(*positionwise_layer_args),
                        positionwise_layer(*positionwise_layer_args)
                        if macaron_style
                        else None,
                        convolution_layer(*convolution_layer_args_normal)
                        if use_cnn_module
                        else None,
                        dropout_rate,
                        normalize_before,
                    )
                )

        self.encoders = torch.nn.ModuleList(layers)

    def set_global_chunk_size(self, chunk_size):
        """Used in ONNX export."""
        logging.info(f"set global chunk size: {chunk_size}, default is 0.")
        self.global_chunk_size = chunk_size
        if self.embed.subsampling_rate == 2:
            self.chunk_feature_map = 2 * self.global_chunk_size + 1
        elif self.embed.subsampling_rate == 6:
            self.chunk_feature_map = 6 * self.global_chunk_size + 5
        elif self.embed.subsampling_rate == 8:
            self.chunk_feature_map = 8 * self.global_chunk_size + 7
        else:
            self.chunk_feature_map = 4 * self.global_chunk_size + 3

    def output_size(self) -> int:
        return self._output_size

    def calculate_downsampling_factor(self, i: int) -> int:
        factor = 1
        for idx, stride_idx in enumerate(self.stride_layer_idx):
            if i > stride_idx:
                factor *= self.stride[idx]
        return factor

    def forward(
        self,
        xs: torch.Tensor,
        xs_lens: torch.Tensor,
        decoding_chunk_size: int = 0,
        num_decoding_left_chunks: int = -1,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Embed positions in tensor.
        Args:
            xs: padded input tensor (B, T, D)
            xs_lens: input length (B)
            decoding_chunk_size: decoding chunk size for dynamic chunk
                0: default for training, use random dynamic chunk.
                <0: for decoding, use full chunk.
                >0: for decoding, use fixed chunk size as set.
            num_decoding_left_chunks: number of left chunks, this is for decoding,
            the chunk size is decoding_chunk_size.
                >=0: use num_decoding_left_chunks
                <0: use all left chunks
        Returns:
            encoder output tensor xs, and subsampled masks
            xs: padded output tensor (B, T' ~= T/subsample_rate, D)
            masks: torch.Tensor batch padding mask after subsample
                (B, 1, T' ~= T/subsample_rate)
        """
        T = xs.size(1)
        masks = ~make_pad_mask(xs_lens, T).unsqueeze(1)  # (B, 1, T)
        if self.global_cmvn is not None:
            xs = self.global_cmvn(xs)
        xs, pos_emb, masks = self.embed(xs, masks)
        mask_pad = masks  # (B, 1, T/subsample_rate)
        chunk_masks = add_optional_chunk_mask(
            xs,
            masks,
            self.use_dynamic_chunk,
            self.use_dynamic_left_chunk,
            decoding_chunk_size,
            self.static_chunk_size,
            num_decoding_left_chunks,
        )
        index = 0  # traverse stride
        for i, layer in enumerate(self.encoders):
            # layer return : x, mask, new_att_cache, new_cnn_cache
            xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
            if i in self.stride_layer_idx:
                masks = masks[:, :, :: self.stride[index]]
                chunk_masks = chunk_masks[
                    :, :: self.stride[index], :: self.stride[index]
                ]
                mask_pad = masks
                pos_emb = pos_emb[:, :: self.stride[index], :]
                index = index + 1

        if self.normalize_before:
            xs = self.after_norm(xs)
        # Here we assume the mask is not changed in encoder layers, so just
        # return the masks before encoder layers, and the masks will be used
        # for cross attention with decoder later
        return xs, masks

    def forward_chunk(
        self,
        xs: torch.Tensor,
        offset: int,
        required_cache_size: int,
        att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
        cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
        att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """Forward just one chunk

        Args:
            xs (torch.Tensor): chunk input
            offset (int): current offset in encoder output time stamp
            required_cache_size (int): cache size required for next chunk
                compuation
                >=0: actual cache size
                <0: means all history cache is required
            att_cache (torch.Tensor): cache tensor for KEY & VALUE in
                transformer/conformer attention, with shape
                (elayers, head, cache_t1, d_k * 2), where
                `head * d_k == hidden-dim` and
                `cache_t1 == chunk_size * num_decoding_left_chunks`.
            cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
                (elayers, b=1, hidden-dim, cache_t2), where
                `cache_t2 == cnn.lorder - 1`
            att_mask : mask matrix of self attention

        Returns:
            torch.Tensor: output of current input xs
            torch.Tensor: subsampling cache required for next chunk computation
            List[torch.Tensor]: encoder layers output cache required for next
                chunk computation
            List[torch.Tensor]: conformer cnn cache

        """
        assert xs.size(0) == 1

        # using downsampling factor to recover offset
        offset *= self.calculate_downsampling_factor(self.num_blocks + 1)

        chunk_masks = torch.ones(1, xs.size(1), device=xs.device, dtype=torch.bool)
        chunk_masks = chunk_masks.unsqueeze(1)  # (1, 1, xs-time)

        real_len = 0
        if self.global_chunk_size > 0:
            # for ONNX decode simulation, padding xs to chunk_size
            real_len = xs.size(1)
            pad_len = self.chunk_feature_map - real_len
            xs = F.pad(xs, (0, 0, 0, pad_len), value=0.0)
            chunk_masks = F.pad(chunk_masks, (0, pad_len), value=0.0)

        if self.global_cmvn is not None:
            xs = self.global_cmvn(xs)

        # NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
        xs, pos_emb, chunk_masks = self.embed(xs, chunk_masks, offset)
        elayers, cache_t1 = att_cache.size(0), att_cache.size(2)
        chunk_size = xs.size(1)
        attention_key_size = cache_t1 + chunk_size
        # NOTE(xcsong): After  embed, shape(xs) is (b=1, chunk_size, hidden-dim)
        # shape(pos_emb) = (b=1, chunk_size, emb_size=output_size=hidden-dim)

        if required_cache_size < 0:
            next_cache_start = 0
        elif required_cache_size == 0:
            next_cache_start = attention_key_size
        else:
            next_cache_start = max(attention_key_size - required_cache_size, 0)

        r_att_cache = []
        r_cnn_cache = []
        mask_pad = torch.ones(1, xs.size(1), device=xs.device, dtype=torch.bool)
        mask_pad = mask_pad.unsqueeze(1)  # batchPad (b=1, 1, time=chunk_size)

        if self.global_chunk_size > 0:
            # for ONNX decode simulation
            pos_emb = self.embed.position_encoding(
                offset=max(offset - cache_t1, 0), size=cache_t1 + self.global_chunk_size
            )
            att_mask[:, :, -self.global_chunk_size :] = chunk_masks
            mask_pad = chunk_masks.to(torch.bool)
        else:
            pos_emb = self.embed.position_encoding(
                offset=offset - cache_t1, size=attention_key_size
            )

        max_att_len, max_cnn_len = 0, 0  # for repeat_interleave of new_att_cache
        for i, layer in enumerate(self.encoders):
            factor = self.calculate_downsampling_factor(i)
            # NOTE(xcsong): Before layer.forward
            #   shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2),
            #   shape(cnn_cache[i])       is (b=1, hidden-dim, cache_t2)
            # shape(new_att_cache) = [ batch, head, time2, outdim//head * 2 ]
            att_cache_trunc = 0
            if xs.size(1) + att_cache.size(2) / factor > pos_emb.size(1):
                # The time step is not divisible by the downsampling multiple
                att_cache_trunc = (
                    xs.size(1) + att_cache.size(2) // factor - pos_emb.size(1) + 1
                )
            xs, _, new_att_cache, new_cnn_cache = layer(
                xs,
                att_mask,
                pos_emb,
                mask_pad=mask_pad,
                att_cache=att_cache[i : i + 1, :, ::factor, :][
                    :, :, att_cache_trunc:, :
                ],
                cnn_cache=cnn_cache[i, :, :, :] if cnn_cache.size(0) > 0 else cnn_cache,
            )

            if i in self.stride_layer_idx:
                # compute time dimension for next block
                efficient_index = self.stride_layer_idx.index(i)
                att_mask = att_mask[
                    :, :: self.stride[efficient_index], :: self.stride[efficient_index]
                ]
                mask_pad = mask_pad[
                    :, :: self.stride[efficient_index], :: self.stride[efficient_index]
                ]
                pos_emb = pos_emb[:, :: self.stride[efficient_index], :]

            # shape(new_att_cache) = [batch, head, time2, outdim]
            new_att_cache = new_att_cache[:, :, next_cache_start // factor :, :]
            # shape(new_cnn_cache) = [1, batch, outdim, cache_t2]
            new_cnn_cache = new_cnn_cache.unsqueeze(0)

            # use repeat_interleave to new_att_cache
            new_att_cache = new_att_cache.repeat_interleave(repeats=factor, dim=2)
            # padding new_cnn_cache to cnn.lorder for casual convolution
            new_cnn_cache = F.pad(
                new_cnn_cache, (self.cnn_module_kernel - 1 - new_cnn_cache.size(3), 0)
            )

            if i == 0:
                # record length for the first block as max length
                max_att_len = new_att_cache.size(2)
                max_cnn_len = new_cnn_cache.size(3)

            # update real shape of att_cache and cnn_cache
            r_att_cache.append(new_att_cache[:, :, -max_att_len:, :])
            r_cnn_cache.append(new_cnn_cache[:, :, :, -max_cnn_len:])

        if self.normalize_before:
            xs = self.after_norm(xs)

        # NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2),
        #   ? may be larger than cache_t1, it depends on required_cache_size
        r_att_cache = torch.cat(r_att_cache, dim=0)
        # NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2)
        r_cnn_cache = torch.cat(r_cnn_cache, dim=0)

        if self.global_chunk_size > 0 and real_len:
            chunk_real_len = (
                real_len
                // self.embed.subsampling_rate
                // self.calculate_downsampling_factor(self.num_blocks + 1)
            )
            # Keeping 1 more timestep can mitigate information leakage
            #   from the encoder caused by the padding
            xs = xs[:, : chunk_real_len + 1, :]

        return xs, r_att_cache, r_cnn_cache

    def forward_chunk_by_chunk(
        self,
        xs: torch.Tensor,
        decoding_chunk_size: int,
        num_decoding_left_chunks: int = -1,
        use_onnx=False,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Forward input chunk by chunk with chunk_size like a streaming
            fashion

        Here we should pay special attention to computation cache in the
        streaming style forward chunk by chunk. Three things should be taken
        into account for computation in the current network:
            1. transformer/conformer encoder layers output cache
            2. convolution in conformer
            3. convolution in subsampling

        However, we don't implement subsampling cache for:
            1. We can control subsampling module to output the right result by
               overlapping input instead of cache left context, even though it
               wastes some computation, but subsampling only takes a very
               small fraction of computation in the whole model.
            2. Typically, there are several covolution layers with subsampling
               in subsampling module, it is tricky and complicated to do cache
               with different convolution layers with different subsampling
               rate.
            3. Currently, nn.Sequential is used to stack all the convolution
               layers in subsampling, we need to rewrite it to make it work
               with cache, which is not prefered.
        Args:
            xs (torch.Tensor): (1, max_len, dim)
            decoding_chunk_size (int): decoding chunk size
            num_decoding_left_chunks (int):
            use_onnx (bool): True for simulating ONNX model inference.
        """
        assert decoding_chunk_size > 0
        # The model is trained by static or dynamic chunk
        assert self.static_chunk_size > 0 or self.use_dynamic_chunk
        subsampling = self.embed.subsampling_rate
        context = self.embed.right_context + 1  # Add current frame
        stride = subsampling * decoding_chunk_size
        decoding_window = (decoding_chunk_size - 1) * subsampling + context
        num_frames = xs.size(1)

        outputs = []
        offset = 0
        required_cache_size = decoding_chunk_size * num_decoding_left_chunks
        if use_onnx:
            logging.info("Simulating for ONNX runtime ...")
            att_cache: torch.Tensor = torch.zeros(
                (
                    self.num_blocks,
                    self.attention_heads,
                    required_cache_size,
                    self.output_size() // self.attention_heads * 2,
                ),
                device=xs.device,
            )
            cnn_cache: torch.Tensor = torch.zeros(
                (self.num_blocks, 1, self.output_size(), self.cnn_module_kernel - 1),
                device=xs.device,
            )
            self.set_global_chunk_size(chunk_size=decoding_chunk_size)
        else:
            logging.info("Simulating for JIT runtime ...")
            att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
            cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)

        # Feed forward overlap input step by step
        for cur in range(0, num_frames - context + 1, stride):
            end = min(cur + decoding_window, num_frames)
            logging.info(
                f"-->> frame chunk msg: cur={cur}, "
                f"end={end}, num_frames={end-cur}, "
                f"decoding_window={decoding_window}"
            )
            if use_onnx:
                att_mask: torch.Tensor = torch.ones(
                    (1, 1, required_cache_size + decoding_chunk_size),
                    dtype=torch.bool,
                    device=xs.device,
                )
                if cur == 0:
                    att_mask[:, :, :required_cache_size] = 0
            else:
                att_mask: torch.Tensor = torch.ones(
                    (0, 0, 0), dtype=torch.bool, device=xs.device
                )

            chunk_xs = xs[:, cur:end, :]
            (y, att_cache, cnn_cache) = self.forward_chunk(
                chunk_xs, offset, required_cache_size, att_cache, cnn_cache, att_mask
            )
            outputs.append(y)
            offset += y.size(1)

        ys = torch.cat(outputs, 1)
        masks = torch.ones(1, 1, ys.size(1), device=ys.device, dtype=torch.bool)
        return ys, masks