File size: 22,118 Bytes
b725c5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).

# ## Citations

# ```bibtex
# @inproceedings{yao2021wenet,
#   title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
#   author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
#   booktitle={Proc. Interspeech},
#   year={2021},
#   address={Brno, Czech Republic },
#   organization={IEEE}
# }

# @article{zhang2022wenet,
#   title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
#   author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
#   journal={arXiv preprint arXiv:2203.15455},
#   year={2022}
# }
#

import torch
import torch.nn as nn
from typing import Tuple, Union, Optional, List
from modules.wenet_extractor.squeezeformer.subsampling import (
    DepthwiseConv2dSubsampling4,
    TimeReductionLayer1D,
    TimeReductionLayer2D,
    TimeReductionLayerStream,
)
from modules.wenet_extractor.squeezeformer.encoder_layer import (
    SqueezeformerEncoderLayer,
)
from modules.wenet_extractor.transformer.embedding import RelPositionalEncoding
from modules.wenet_extractor.transformer.attention import MultiHeadedAttention
from modules.wenet_extractor.squeezeformer.attention import (
    RelPositionMultiHeadedAttention,
)
from modules.wenet_extractor.squeezeformer.positionwise_feed_forward import (
    PositionwiseFeedForward,
)
from modules.wenet_extractor.squeezeformer.convolution import ConvolutionModule
from modules.wenet_extractor.utils.mask import make_pad_mask, add_optional_chunk_mask
from modules.wenet_extractor.utils.common import get_activation


class SqueezeformerEncoder(nn.Module):
    def __init__(
        self,
        input_size: int = 80,
        encoder_dim: int = 256,
        output_size: int = 256,
        attention_heads: int = 4,
        num_blocks: int = 12,
        reduce_idx: Optional[Union[int, List[int]]] = 5,
        recover_idx: Optional[Union[int, List[int]]] = 11,
        feed_forward_expansion_factor: int = 4,
        dw_stride: bool = False,
        input_dropout_rate: float = 0.1,
        pos_enc_layer_type: str = "rel_pos",
        time_reduction_layer_type: str = "conv1d",
        do_rel_shift: bool = True,
        feed_forward_dropout_rate: float = 0.1,
        attention_dropout_rate: float = 0.1,
        cnn_module_kernel: int = 31,
        cnn_norm_type: str = "batch_norm",
        dropout: float = 0.1,
        causal: bool = False,
        adaptive_scale: bool = True,
        activation_type: str = "swish",
        init_weights: bool = True,
        global_cmvn: torch.nn.Module = None,
        normalize_before: bool = False,
        use_dynamic_chunk: bool = False,
        concat_after: bool = False,
        static_chunk_size: int = 0,
        use_dynamic_left_chunk: bool = False,
    ):
        """Construct SqueezeformerEncoder

        Args:
            input_size to use_dynamic_chunk, see in Transformer BaseEncoder.
            encoder_dim (int): The hidden dimension of encoder layer.
            output_size (int): The output dimension of final projection layer.
            attention_heads (int): Num of attention head in attention module.
            num_blocks (int): Num of encoder layers.
            reduce_idx Optional[Union[int, List[int]]]:
                reduce layer index, from 40ms to 80ms per frame.
            recover_idx Optional[Union[int, List[int]]]:
                recover layer index, from 80ms to 40ms per frame.
            feed_forward_expansion_factor (int): Enlarge coefficient of FFN.
            dw_stride (bool): Whether do depthwise convolution
                              on subsampling module.
            input_dropout_rate (float): Dropout rate of input projection layer.
            pos_enc_layer_type (str): Self attention type.
            time_reduction_layer_type (str): Conv1d or Conv2d reduction layer.
            do_rel_shift (bool): Whether to do relative shift
                                 operation on rel-attention module.
            cnn_module_kernel (int): Kernel size of CNN module.
            activation_type (str): Encoder activation function type.
            use_cnn_module (bool): Whether to use convolution module.
            cnn_module_kernel (int): Kernel size of convolution module.
            adaptive_scale (bool): Whether to use adaptive scale.
            init_weights (bool): Whether to initialize weights.
            causal (bool): whether to use causal convolution or not.
        """
        super(SqueezeformerEncoder, self).__init__()
        self.global_cmvn = global_cmvn
        self.reduce_idx: Optional[Union[int, List[int]]] = (
            [reduce_idx] if type(reduce_idx) == int else reduce_idx
        )
        self.recover_idx: Optional[Union[int, List[int]]] = (
            [recover_idx] if type(recover_idx) == int else recover_idx
        )
        self.check_ascending_list()
        if reduce_idx is None:
            self.time_reduce = None
        else:
            if recover_idx is None:
                self.time_reduce = "normal"  # no recovery at the end
            else:
                self.time_reduce = "recover"  # recovery at the end
                assert len(self.reduce_idx) == len(self.recover_idx)
            self.reduce_stride = 2
        self._output_size = output_size
        self.normalize_before = normalize_before
        self.static_chunk_size = static_chunk_size
        self.use_dynamic_chunk = use_dynamic_chunk
        self.use_dynamic_left_chunk = use_dynamic_left_chunk
        self.pos_enc_layer_type = pos_enc_layer_type
        activation = get_activation(activation_type)

        # self-attention module definition
        if pos_enc_layer_type != "rel_pos":
            encoder_selfattn_layer = MultiHeadedAttention
            encoder_selfattn_layer_args = (
                attention_heads,
                output_size,
                attention_dropout_rate,
            )
        else:
            encoder_selfattn_layer = RelPositionMultiHeadedAttention
            encoder_selfattn_layer_args = (
                attention_heads,
                encoder_dim,
                attention_dropout_rate,
                do_rel_shift,
                adaptive_scale,
                init_weights,
            )

        # feed-forward module definition
        positionwise_layer = PositionwiseFeedForward
        positionwise_layer_args = (
            encoder_dim,
            encoder_dim * feed_forward_expansion_factor,
            feed_forward_dropout_rate,
            activation,
            adaptive_scale,
            init_weights,
        )

        # convolution module definition
        convolution_layer = ConvolutionModule
        convolution_layer_args = (
            encoder_dim,
            cnn_module_kernel,
            activation,
            cnn_norm_type,
            causal,
            True,
            adaptive_scale,
            init_weights,
        )

        self.embed = DepthwiseConv2dSubsampling4(
            1,
            encoder_dim,
            RelPositionalEncoding(encoder_dim, dropout_rate=0.1),
            dw_stride,
            input_size,
            input_dropout_rate,
            init_weights,
        )

        self.preln = nn.LayerNorm(encoder_dim)
        self.encoders = torch.nn.ModuleList(
            [
                SqueezeformerEncoderLayer(
                    encoder_dim,
                    encoder_selfattn_layer(*encoder_selfattn_layer_args),
                    positionwise_layer(*positionwise_layer_args),
                    convolution_layer(*convolution_layer_args),
                    positionwise_layer(*positionwise_layer_args),
                    normalize_before,
                    dropout,
                    concat_after,
                )
                for _ in range(num_blocks)
            ]
        )
        if time_reduction_layer_type == "conv1d":
            time_reduction_layer = TimeReductionLayer1D
            time_reduction_layer_args = {
                "channel": encoder_dim,
                "out_dim": encoder_dim,
            }
        elif time_reduction_layer_type == "stream":
            time_reduction_layer = TimeReductionLayerStream
            time_reduction_layer_args = {
                "channel": encoder_dim,
                "out_dim": encoder_dim,
            }
        else:
            time_reduction_layer = TimeReductionLayer2D
            time_reduction_layer_args = {"encoder_dim": encoder_dim}

        self.time_reduction_layer = time_reduction_layer(**time_reduction_layer_args)
        self.time_recover_layer = nn.Linear(encoder_dim, encoder_dim)
        self.final_proj = None
        if output_size != encoder_dim:
            self.final_proj = nn.Linear(encoder_dim, output_size)

    def output_size(self) -> int:
        return self._output_size

    def forward(
        self,
        xs: torch.Tensor,
        xs_lens: torch.Tensor,
        decoding_chunk_size: int = 0,
        num_decoding_left_chunks: int = -1,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        T = xs.size(1)
        masks = ~make_pad_mask(xs_lens, T).unsqueeze(1)  # (B, 1, T)
        if self.global_cmvn is not None:
            xs = self.global_cmvn(xs)
        xs, pos_emb, masks = self.embed(xs, masks)
        mask_pad = masks  # (B, 1, T/subsample_rate)
        chunk_masks = add_optional_chunk_mask(
            xs,
            masks,
            self.use_dynamic_chunk,
            self.use_dynamic_left_chunk,
            decoding_chunk_size,
            self.static_chunk_size,
            num_decoding_left_chunks,
        )
        xs_lens = mask_pad.squeeze(1).sum(1)
        xs = self.preln(xs)
        recover_activations: List[
            Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]
        ] = []
        index = 0
        for i, layer in enumerate(self.encoders):
            if self.reduce_idx is not None:
                if self.time_reduce is not None and i in self.reduce_idx:
                    recover_activations.append((xs, chunk_masks, pos_emb, mask_pad))
                    xs, xs_lens, chunk_masks, mask_pad = self.time_reduction_layer(
                        xs, xs_lens, chunk_masks, mask_pad
                    )
                    pos_emb = pos_emb[:, ::2, :]
                    index += 1

            if self.recover_idx is not None:
                if self.time_reduce == "recover" and i in self.recover_idx:
                    index -= 1
                    (
                        recover_tensor,
                        recover_chunk_masks,
                        recover_pos_emb,
                        recover_mask_pad,
                    ) = recover_activations[index]
                    # recover output length for ctc decode
                    xs = xs.unsqueeze(2).repeat(1, 1, 2, 1).flatten(1, 2)
                    xs = self.time_recover_layer(xs)
                    recoverd_t = recover_tensor.size(1)
                    xs = recover_tensor + xs[:, :recoverd_t, :].contiguous()
                    chunk_masks = recover_chunk_masks
                    pos_emb = recover_pos_emb
                    mask_pad = recover_mask_pad
                    xs = xs.masked_fill(~mask_pad[:, 0, :].unsqueeze(-1), 0.0)

            xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)

        if self.final_proj is not None:
            xs = self.final_proj(xs)
        return xs, masks

    def check_ascending_list(self):
        if self.reduce_idx is not None:
            assert self.reduce_idx == sorted(
                self.reduce_idx
            ), "reduce_idx should be int or ascending list"
        if self.recover_idx is not None:
            assert self.recover_idx == sorted(
                self.recover_idx
            ), "recover_idx should be int or ascending list"

    def calculate_downsampling_factor(self, i: int) -> int:
        if self.reduce_idx is None:
            return 1
        else:
            reduce_exp, recover_exp = 0, 0
            for exp, rd_idx in enumerate(self.reduce_idx):
                if i >= rd_idx:
                    reduce_exp = exp + 1
            if self.recover_idx is not None:
                for exp, rc_idx in enumerate(self.recover_idx):
                    if i >= rc_idx:
                        recover_exp = exp + 1
            return int(2 ** (reduce_exp - recover_exp))

    def forward_chunk(
        self,
        xs: torch.Tensor,
        offset: int,
        required_cache_size: int,
        att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
        cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
        att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """ Forward just one chunk

        Args:
            xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim),
                where `time == (chunk_size - 1) * subsample_rate + \
                        subsample.right_context + 1`
            offset (int): current offset in encoder output time stamp
            required_cache_size (int): cache size required for next chunk
                compuation
                >=0: actual cache size
                <0: means all history cache is required
            att_cache (torch.Tensor): cache tensor for KEY & VALUE in
                transformer/conformer attention, with shape
                (elayers, head, cache_t1, d_k * 2), where
                `head * d_k == hidden-dim` and
                `cache_t1 == chunk_size * num_decoding_left_chunks`.
            cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
                (elayers, b=1, hidden-dim, cache_t2), where
                `cache_t2 == cnn.lorder - 1`

        Returns:
            torch.Tensor: output of current input xs,
                with shape (b=1, chunk_size, hidden-dim).
            torch.Tensor: new attention cache required for next chunk, with
                dynamic shape (elayers, head, ?, d_k * 2)
                depending on required_cache_size.
            torch.Tensor: new conformer cnn cache required for next chunk, with
                same shape as the original cnn_cache.

        """
        assert xs.size(0) == 1
        # tmp_masks is just for interface compatibility
        tmp_masks = torch.ones(1, xs.size(1), device=xs.device, dtype=torch.bool)
        tmp_masks = tmp_masks.unsqueeze(1)
        if self.global_cmvn is not None:
            xs = self.global_cmvn(xs)
        # NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
        xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
        # NOTE(xcsong): After  embed, shape(xs) is (b=1, chunk_size, hidden-dim)
        elayers, cache_t1 = att_cache.size(0), att_cache.size(2)
        chunk_size = xs.size(1)
        attention_key_size = cache_t1 + chunk_size
        pos_emb = self.embed.position_encoding(
            offset=offset - cache_t1, size=attention_key_size
        )
        if required_cache_size < 0:
            next_cache_start = 0
        elif required_cache_size == 0:
            next_cache_start = attention_key_size
        else:
            next_cache_start = max(attention_key_size - required_cache_size, 0)

        r_att_cache = []
        r_cnn_cache = []

        mask_pad = torch.ones(1, xs.size(1), device=xs.device, dtype=torch.bool)
        mask_pad = mask_pad.unsqueeze(1)
        max_att_len: int = 0
        recover_activations: List[
            Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]
        ] = []
        index = 0
        xs_lens = torch.tensor([xs.size(1)], device=xs.device, dtype=torch.int)
        xs = self.preln(xs)
        for i, layer in enumerate(self.encoders):
            # NOTE(xcsong): Before layer.forward
            #   shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2),
            #   shape(cnn_cache[i])       is (b=1, hidden-dim, cache_t2)
            if self.reduce_idx is not None:
                if self.time_reduce is not None and i in self.reduce_idx:
                    recover_activations.append((xs, att_mask, pos_emb, mask_pad))
                    xs, xs_lens, att_mask, mask_pad = self.time_reduction_layer(
                        xs, xs_lens, att_mask, mask_pad
                    )
                    pos_emb = pos_emb[:, ::2, :]
                    index += 1

            if self.recover_idx is not None:
                if self.time_reduce == "recover" and i in self.recover_idx:
                    index -= 1
                    (
                        recover_tensor,
                        recover_att_mask,
                        recover_pos_emb,
                        recover_mask_pad,
                    ) = recover_activations[index]
                    # recover output length for ctc decode
                    xs = xs.unsqueeze(2).repeat(1, 1, 2, 1).flatten(1, 2)
                    xs = self.time_recover_layer(xs)
                    recoverd_t = recover_tensor.size(1)
                    xs = recover_tensor + xs[:, :recoverd_t, :].contiguous()
                    att_mask = recover_att_mask
                    pos_emb = recover_pos_emb
                    mask_pad = recover_mask_pad
                    if att_mask.size(1) != 0:
                        xs = xs.masked_fill(~att_mask[:, 0, :].unsqueeze(-1), 0.0)

            factor = self.calculate_downsampling_factor(i)

            xs, _, new_att_cache, new_cnn_cache = layer(
                xs,
                att_mask,
                pos_emb,
                att_cache=att_cache[i : i + 1][:, :, ::factor, :][
                    :, :, : pos_emb.size(1) - xs.size(1), :
                ]
                if elayers > 0
                else att_cache[:, :, ::factor, :],
                cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache,
            )
            # NOTE(xcsong): After layer.forward
            #   shape(new_att_cache) is (1, head, attention_key_size, d_k * 2),
            #   shape(new_cnn_cache) is (b=1, hidden-dim, cache_t2)
            cached_att = new_att_cache[:, :, next_cache_start // factor :, :]
            cached_cnn = new_cnn_cache.unsqueeze(0)
            cached_att = (
                cached_att.unsqueeze(3).repeat(1, 1, 1, factor, 1).flatten(2, 3)
            )
            if i == 0:
                # record length for the first block as max length
                max_att_len = cached_att.size(2)
            r_att_cache.append(cached_att[:, :, :max_att_len, :])
            r_cnn_cache.append(cached_cnn)
        # NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2),
        #   ? may be larger than cache_t1, it depends on required_cache_size
        r_att_cache = torch.cat(r_att_cache, dim=0)
        # NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2)
        r_cnn_cache = torch.cat(r_cnn_cache, dim=0)

        if self.final_proj is not None:
            xs = self.final_proj(xs)
        return (xs, r_att_cache, r_cnn_cache)

    def forward_chunk_by_chunk(
        self,
        xs: torch.Tensor,
        decoding_chunk_size: int,
        num_decoding_left_chunks: int = -1,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Forward input chunk by chunk with chunk_size like a streaming
            fashion

        Here we should pay special attention to computation cache in the
        streaming style forward chunk by chunk. Three things should be taken
        into account for computation in the current network:
            1. transformer/conformer encoder layers output cache
            2. convolution in conformer
            3. convolution in subsampling

        However, we don't implement subsampling cache for:
            1. We can control subsampling module to output the right result by
               overlapping input instead of cache left context, even though it
               wastes some computation, but subsampling only takes a very
               small fraction of computation in the whole model.
            2. Typically, there are several covolution layers with subsampling
               in subsampling module, it is tricky and complicated to do cache
               with different convolution layers with different subsampling
               rate.
            3. Currently, nn.Sequential is used to stack all the convolution
               layers in subsampling, we need to rewrite it to make it work
               with cache, which is not prefered.
        Args:
            xs (torch.Tensor): (1, max_len, dim)
            chunk_size (int): decoding chunk size
        """
        assert decoding_chunk_size > 0
        # The model is trained by static or dynamic chunk
        assert self.static_chunk_size > 0 or self.use_dynamic_chunk
        subsampling = self.embed.subsampling_rate
        context = self.embed.right_context + 1  # Add current frame
        stride = subsampling * decoding_chunk_size
        decoding_window = (decoding_chunk_size - 1) * subsampling + context
        num_frames = xs.size(1)
        att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
        cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
        outputs = []
        offset = 0
        required_cache_size = decoding_chunk_size * num_decoding_left_chunks

        # Feed forward overlap input step by step
        for cur in range(0, num_frames - context + 1, stride):
            end = min(cur + decoding_window, num_frames)
            chunk_xs = xs[:, cur:end, :]
            (y, att_cache, cnn_cache) = self.forward_chunk(
                chunk_xs, offset, required_cache_size, att_cache, cnn_cache
            )
            outputs.append(y)
            offset += y.size(1)
        ys = torch.cat(outputs, 1)
        masks = torch.ones((1, 1, ys.size(1)), device=ys.device, dtype=torch.bool)
        return ys, masks