File size: 12,219 Bytes
b725c5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn

from modules.encoder.position_encoder import PositionEncoder
from modules.general.utils import append_dims, ConvNd, normalization, zero_module
from .attention import AttentionBlock
from .resblock import Downsample, ResBlock, Upsample


class UNet(nn.Module):
    r"""The full UNet model with attention and timestep embedding.

    Args:
        dims: determines if the signal is 1D (temporal), 2D(spatial).
        in_channels: channels in the input Tensor.
        model_channels: base channel count for the model.
        out_channels: channels in the output Tensor.
        num_res_blocks: number of residual blocks per downsample.
        channel_mult: channel multiplier for each level of the UNet.
        num_attn_blocks: number of attention blocks at place.
        attention_resolutions: a collection of downsample rates at which attention will
            take place. May be a set, list, or tuple. For example, if this contains 4,
            then at 4x downsampling, attention will be used.
        num_heads: the number of attention heads in each attention layer.
        num_head_channels: if specified, ignore num_heads and instead use a fixed
            channel width per attention head.
        d_context: if specified, use for cross-attention channel project.
        p_dropout: the dropout probability.
        use_self_attention: Apply self attention before cross attention.
        num_classes: if specified (as an int), then this model will be class-conditional
            with ``num_classes`` classes.
        use_extra_film: if specified, use an extra FiLM-like conditioning mechanism.
        d_emb: if specified, use for FiLM-like conditioning.
        use_scale_shift_norm: use a FiLM-like conditioning mechanism.
        resblock_updown: use residual blocks for up/downsampling.
    """

    def __init__(
        self,
        dims: int = 1,
        in_channels: int = 100,
        model_channels: int = 128,
        out_channels: int = 100,
        h_dim: int = 128,
        num_res_blocks: int = 1,
        channel_mult: tuple = (1, 2, 4),
        num_attn_blocks: int = 1,
        attention_resolutions: tuple = (1, 2, 4),
        num_heads: int = 1,
        num_head_channels: int = -1,
        d_context: int = None,
        context_hdim: int = 128,
        p_dropout: float = 0.0,
        num_classes: int = -1,
        use_extra_film: str = None,
        d_emb: int = None,
        use_scale_shift_norm: bool = True,
        resblock_updown: bool = False,
    ):
        super().__init__()

        self.dims = dims
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.num_res_blocks = num_res_blocks
        self.channel_mult = channel_mult
        self.num_attn_blocks = num_attn_blocks
        self.attention_resolutions = attention_resolutions
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.d_context = d_context
        self.p_dropout = p_dropout
        self.num_classes = num_classes
        self.use_extra_film = use_extra_film
        self.d_emb = d_emb
        self.use_scale_shift_norm = use_scale_shift_norm
        self.resblock_updown = resblock_updown

        time_embed_dim = model_channels * 4
        self.pos_enc = PositionEncoder(model_channels, time_embed_dim)

        assert (
            num_classes == -1 or use_extra_film is None
        ), "You cannot set both num_classes and use_extra_film."

        if self.num_classes > 0:
            # TODO: if used for singer, norm should be 1, correct?
            self.label_emb = nn.Embedding(num_classes, time_embed_dim, max_norm=1.0)
        elif use_extra_film is not None:
            assert (
                d_emb is not None
            ), "d_emb must be specified if use_extra_film is not None"
            assert use_extra_film in [
                "add",
                "concat",
            ], f"use_extra_film only supported by add or concat. Your input is {use_extra_film}"
            self.use_extra_film = use_extra_film
            self.film_emb = ConvNd(dims, d_emb, time_embed_dim, 1)
            if use_extra_film == "concat":
                time_embed_dim *= 2

        # Input blocks
        ch = input_ch = int(channel_mult[0] * model_channels)
        self.input_blocks = nn.ModuleList(
            [UNetSequential(ConvNd(dims, in_channels, ch, 3, padding=1))]
        )
        self._feature_size = ch
        input_block_chans = [ch]
        ds = 1
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        p_dropout,
                        out_channels=int(mult * model_channels),
                        dims=dims,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = int(mult * model_channels)
                if ds in attention_resolutions:
                    for _ in range(num_attn_blocks):
                        layers.append(
                            AttentionBlock(
                                ch,
                                num_heads=num_heads,
                                num_head_channels=num_head_channels,
                                encoder_channels=d_context,
                                dims=dims,
                                h_dim=h_dim // (level + 1),
                                encoder_hdim=context_hdim,
                                p_dropout=p_dropout,
                            )
                        )
                self.input_blocks.append(UNetSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    UNetSequential(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            p_dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
                        )
                        if resblock_updown
                        else Downsample(ch, dims=dims, out_channels=out_ch)
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        # Middle blocks
        self.middle_block = UNetSequential(
            ResBlock(
                ch,
                time_embed_dim,
                p_dropout,
                dims=dims,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
            AttentionBlock(
                ch,
                num_heads=num_heads,
                num_head_channels=num_head_channels,
                encoder_channels=d_context,
                dims=dims,
                h_dim=h_dim // (level + 1),
                encoder_hdim=context_hdim,
                p_dropout=p_dropout,
            ),
            ResBlock(
                ch,
                time_embed_dim,
                p_dropout,
                dims=dims,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
        )
        self._feature_size += ch

        # Output blocks
        self.output_blocks = nn.ModuleList([])
        for level, mult in tuple(enumerate(channel_mult))[::-1]:
            for i in range(num_res_blocks + 1):
                ich = input_block_chans.pop()
                layers = [
                    ResBlock(
                        ch + ich,
                        time_embed_dim,
                        p_dropout,
                        out_channels=int(model_channels * mult),
                        dims=dims,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = int(model_channels * mult)
                if ds in attention_resolutions:
                    for _ in range(num_attn_blocks):
                        layers.append(
                            AttentionBlock(
                                ch,
                                num_heads=num_heads,
                                num_head_channels=num_head_channels,
                                encoder_channels=d_context,
                                dims=dims,
                                h_dim=h_dim // (level + 1),
                                encoder_hdim=context_hdim,
                                p_dropout=p_dropout,
                            )
                        )
                if level and i == num_res_blocks:
                    out_ch = ch
                    layers.append(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            p_dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_scale_shift_norm=use_scale_shift_norm,
                            up=True,
                        )
                        if resblock_updown
                        else Upsample(ch, dims=dims, out_channels=out_ch)
                    )
                    ds //= 2
                self.output_blocks.append(UNetSequential(*layers))
                self._feature_size += ch

        # Final proj out
        self.out = nn.Sequential(
            normalization(ch),
            nn.SiLU(),
            zero_module(ConvNd(dims, input_ch, out_channels, 3, padding=1)),
        )

    def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
        r"""Apply the model to an input batch.

        Args:
            x: an [N x C x ...] Tensor of inputs.
            timesteps: a 1-D batch of timesteps, i.e. [N].
            context: conditioning Tensor with shape of [N x ``d_context`` x ...] plugged
            in via cross attention.
            y: an [N] Tensor of labels, if **class-conditional**.
            an [N x ``d_emb`` x ...] Tensor if **film-embed conditional**.

        Returns:
            an [N x C x ...] Tensor of outputs.
        """
        assert (y is None) or (
            (y is not None)
            and ((self.num_classes > 0) or (self.use_extra_film is not None))
        ), f"y must be specified if num_classes or use_extra_film is not None. \nGot num_classes: {self.num_classes}\t\nuse_extra_film: {self.use_extra_film}\t\n"

        hs = []
        emb = self.pos_enc(timesteps)
        emb = append_dims(emb, x.dim())

        if self.num_classes > 0:
            assert y.size() == (x.size(0),)
            emb = emb + self.label_emb(y)
        elif self.use_extra_film is not None:
            assert y.size() == (x.size(0), self.d_emb, *x.size()[2:])
            y = self.film_emb(y)
            if self.use_extra_film == "add":
                emb = emb + y
            elif self.use_extra_film == "concat":
                emb = torch.cat([emb, y], dim=1)

        h = x
        for module in self.input_blocks:
            h = module(h, emb, context)
            hs.append(h)
        h = self.middle_block(h, emb, context)
        for module in self.output_blocks:
            h = torch.cat([h, hs.pop()], dim=1)
            h = module(h, emb, context)

        return self.out(h)


class UNetSequential(nn.Sequential):
    r"""A sequential module that passes embeddings to the children that support it."""

    def forward(self, x, emb=None, context=None):
        for layer in self:
            if isinstance(layer, ResBlock):
                x = layer(x, emb)
            elif isinstance(layer, AttentionBlock):
                x = layer(x, context)
            else:
                x = layer(x)
        return x