Spaces:
Running
on
Zero
Running
on
Zero
wli3221134
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,40 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
import spaces
|
4 |
-
import os
|
5 |
import gradio as gr
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
from model import Wav2Vec2BERT_Llama # 自定义模型模块
|
10 |
import dataset # 自定义数据集模块
|
|
|
11 |
|
12 |
-
@spaces.GPU
|
13 |
-
def dummy(): # just a dummy
|
14 |
-
pass
|
15 |
|
16 |
# 初始化设备
|
17 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
|
19 |
# 初始化模型
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
# 检测函数
|
42 |
def detect(dataset, model):
|
@@ -96,13 +94,13 @@ def gradio_ui():
|
|
96 |
interface = gr.Interface(
|
97 |
fn=detection_wrapper, # 主函数
|
98 |
inputs=[
|
99 |
-
gr.Audio(type="filepath", label="Demonstration Audio 1"),
|
100 |
gr.Dropdown(choices=["bonafide", "spoof"], value="bonafide", label="Label 1"),
|
101 |
-
gr.Audio(type="filepath", label="Demonstration Audio 2"),
|
102 |
gr.Dropdown(choices=["bonafide", "spoof"], value="bonafide", label="Label 2"),
|
103 |
-
gr.Audio(type="filepath", label="Demonstration Audio 3"),
|
104 |
gr.Dropdown(choices=["bonafide", "spoof"], value="bonafide", label="Label 3"),
|
105 |
-
gr.Audio(type="filepath", label="Query Audio (Audio for Detection)")
|
106 |
],
|
107 |
outputs=gr.JSON(label="Detection Results"),
|
108 |
title="Audio Deepfake Detection System",
|
@@ -110,7 +108,6 @@ def gradio_ui():
|
|
110 |
)
|
111 |
return interface
|
112 |
|
113 |
-
|
114 |
if __name__ == "__main__":
|
115 |
demo = gradio_ui()
|
116 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import torch
|
|
|
4 |
from model import Wav2Vec2BERT_Llama # 自定义模型模块
|
5 |
import dataset # 自定义数据集模块
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
|
|
|
|
|
|
|
8 |
|
9 |
# 初始化设备
|
10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
|
12 |
# 初始化模型
|
13 |
+
def load_model():
|
14 |
+
model = Wav2Vec2BERT_Llama().to(device)
|
15 |
+
checkpoint_path = hf_hub_download(
|
16 |
+
repo_id="amphion/deepfake_detection",
|
17 |
+
filename="checkpoints_wav2vec2bert_ft_llama_labels_ASVspoof2019_RandomPrompts_6/model_checkpoint.pth"
|
18 |
+
)
|
19 |
+
# checkpoint_path = "ckpt/model_checkpoint.pth"
|
20 |
+
if os.path.exists(checkpoint_path):
|
21 |
+
checkpoint = torch.load(checkpoint_path)
|
22 |
+
model_state_dict = checkpoint['model_state_dict']
|
23 |
+
threshold = 0.9996
|
24 |
+
|
25 |
+
# 处理模型状态字典的 key
|
26 |
+
if hasattr(model, 'module') and not any(key.startswith('module.') for key in model_state_dict.keys()):
|
27 |
+
model_state_dict = {'module.' + key: value for key, value in model_state_dict.items()}
|
28 |
+
elif not hasattr(model, 'module') and any(key.startswith('module.') for key in model_state_dict.keys()):
|
29 |
+
model_state_dict = {key.replace('module.', ''): value for key, value in model_state_dict.items()}
|
30 |
+
|
31 |
+
model.load_state_dict(model_state_dict)
|
32 |
+
model.eval()
|
33 |
+
else:
|
34 |
+
raise FileNotFoundError(f"Checkpoint not found: {checkpoint_path}")
|
35 |
+
return model, threshold
|
36 |
+
|
37 |
+
model, threshold = load_model()
|
38 |
|
39 |
# 检测函数
|
40 |
def detect(dataset, model):
|
|
|
94 |
interface = gr.Interface(
|
95 |
fn=detection_wrapper, # 主函数
|
96 |
inputs=[
|
97 |
+
gr.Audio(source="upload", type="filepath", label="Demonstration Audio 1"),
|
98 |
gr.Dropdown(choices=["bonafide", "spoof"], value="bonafide", label="Label 1"),
|
99 |
+
gr.Audio(source="upload", type="filepath", label="Demonstration Audio 2"),
|
100 |
gr.Dropdown(choices=["bonafide", "spoof"], value="bonafide", label="Label 2"),
|
101 |
+
gr.Audio(source="upload", type="filepath", label="Demonstration Audio 3"),
|
102 |
gr.Dropdown(choices=["bonafide", "spoof"], value="bonafide", label="Label 3"),
|
103 |
+
gr.Audio(source="upload", type="filepath", label="Query Audio (Audio for Detection)")
|
104 |
],
|
105 |
outputs=gr.JSON(label="Detection Results"),
|
106 |
title="Audio Deepfake Detection System",
|
|
|
108 |
)
|
109 |
return interface
|
110 |
|
|
|
111 |
if __name__ == "__main__":
|
112 |
demo = gradio_ui()
|
113 |
+
demo.launch()
|