wli3221134's picture
Upload 8 files
0aed679 verified
import spaces
import gradio as gr
import os
import torch
from model import Wav2Vec2BERT_Llama # 自定义模型模块
import dataset # 自定义数据集模块
from huggingface_hub import hf_hub_download
@spaces.GPU
def dummy(): # just a dummy
pass
# 修改 load_model 函数
def load_model():
checkpoint_path = hf_hub_download(
repo_id="amphion/deepfake_detection",
filename="checkpoints_wav2vec2bert_ft_llama_labels_ASVspoof2019_RandomPrompts_6/model_checkpoint.pth",
repo_type="model"
)
if not os.path.exists(checkpoint_path):
raise FileNotFoundError(f"Checkpoint not found: {checkpoint_path}")
return checkpoint_path
checkpoint_path = load_model()
# 将 detect 函数移到 GPU 装饰器下
@spaces.GPU
def detect_on_gpu(dataset):
"""在 GPU 上进行音频伪造检测"""
print("\n=== 开始音频检测 ===")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
print("正在初始化模型...")
model = Wav2Vec2BERT_Llama().to(device)
print(f"正在加载模型权重: {checkpoint_path}")
checkpoint = torch.load(checkpoint_path, map_location=device)
model_state_dict = checkpoint['model_state_dict']
threshold = 0.9996
print(f"检测阈值设置为: {threshold}")
# 处理模型状态字典的 key
if hasattr(model, 'module') and not any(key.startswith('module.') for key in model_state_dict.keys()):
print("添加 'module.' 前缀到状态字典的 key")
model_state_dict = {'module.' + key: value for key, value in model_state_dict.items()}
elif not hasattr(model, 'module') and any(key.startswith('module.') for key in model_state_dict.keys()):
print("移除状态字典 key 中的 'module.' 前缀")
model_state_dict = {key.replace('module.', ''): value for key, value in model_state_dict.items()}
model.load_state_dict(model_state_dict)
model.eval()
print("模型加载完成,进入评估模式")
print("\n开始处理音频数据...")
with torch.no_grad():
for batch_idx, batch in enumerate(dataset):
print(f"\n处理批次 {batch_idx + 1}")
print("准备主特征...")
main_features = {
'input_features': batch['main_features']['input_features'].to(device),
'attention_mask': batch['main_features']['attention_mask'].to(device)
}
print(f"主特征形状: {main_features['input_features'].shape}")
if len(batch['prompt_features']) > 0:
print("\n准备提示特征...")
prompt_features = [{
'input_features': pf['input_features'].to(device),
'attention_mask': pf['attention_mask'].to(device)
} for pf in batch['prompt_features']]
print(f"提示特征数量: {len(prompt_features)}")
print(f"第一个提示特征形状: {prompt_features[0]['input_features'].shape}")
print("\n准备提示标签...")
prompt_labels = batch['prompt_labels'].to(device)
print(f"提示标签形状: {prompt_labels.shape}")
print(f"提示标签值: {prompt_labels}")
else:
prompt_features = []
prompt_labels = []
print("\n执行模型推理...")
outputs = model({
'main_features': main_features,
'prompt_features': prompt_features,
'prompt_labels': prompt_labels
})
print("\n处理模型输出...")
avg_scores = outputs['avg_logits'].softmax(dim=-1)
deepfake_scores = avg_scores[:, 1].cpu()
is_fake = deepfake_scores[0].item() > threshold
result = {"is_fake": is_fake, "confidence": deepfake_scores[0] if is_fake else 1-deepfake_scores[0]}
break
print("\n=== 检测完成 ===")
return result
# 修改音频伪造检测主函数
def audio_deepfake_detection(demonstrations, query_audio_path):
demonstration_paths = [audio[0] for audio in demonstrations if audio[0] is not None]
demonstration_labels = [audio[1] for audio in demonstrations if audio[1] is not None]
if len(demonstration_paths) != len(demonstration_labels):
demonstration_labels = demonstration_labels[:len(demonstration_paths)]
# 数据集处理
audio_dataset = dataset.DemoDataset(demonstration_paths, demonstration_labels, query_audio_path)
# 调用 GPU 检测函数
result = detect_on_gpu(audio_dataset)
return {
"Is AI Generated": result["is_fake"],
"Confidence": f"{100*result['confidence']:.2f}%"
}
# Gradio 界面
def gradio_ui():
def detection_wrapper(demonstration_audio1, label1, demonstration_audio2, label2, demonstration_audio3, label3, query_audio):
demonstrations = [
(demonstration_audio1, label1),
(demonstration_audio2, label2),
(demonstration_audio3, label3),
]
return audio_deepfake_detection(demonstrations,query_audio)
interface = gr.Interface(
fn=detection_wrapper,
inputs=[
gr.Audio(sources=["upload"], type="filepath", label="Demonstration Audio 1"),
gr.Dropdown(choices=["bonafide", "spoof"], value="bonafide", label="Label 1"),
gr.Audio(sources=["upload"], type="filepath", label="Demonstration Audio 2"),
gr.Dropdown(choices=["bonafide", "spoof"], value="bonafide", label="Label 2"),
gr.Audio(sources=["upload"], type="filepath", label="Demonstration Audio 3"),
gr.Dropdown(choices=["bonafide", "spoof"], value="bonafide", label="Label 3"),
gr.Audio(sources=["upload"], type="filepath", label="Query Audio (Audio for Detection)")
],
outputs=gr.JSON(label="Detection Results"),
title="Audio Deepfake Detection System",
description="Upload demonstration audios and a query audio to detect whether the query is AI-generated.",
)
return interface
if __name__ == "__main__":
demo = gradio_ui()
demo.launch()