File size: 20,366 Bytes
34146f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
from transformers import LlamaConfig, LlamaForCausalLM, LlamaModel
import torch
import torch.nn.functional as F
import numpy as np
import os
import torch.nn as nn
from typing import List, Optional, Tuple, Union
import math

from transformers.models.llama.modeling_llama import LlamaDecoderLayer
from torchmetrics.classification import MulticlassAccuracy
from transformers.models.llama.modeling_llama import BaseModelOutputWithPast


# sinusoidal positional encoding
class SinusoidalPosEmb(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        device = x.device
        half_dim = self.dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
        emb = x[:, None] * emb[None, :] * 1.0
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb



    
class LlamaAdaptiveRMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
        # The gamma parameter
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x: torch.Tensor):
        # (B, Seq_Len, Dim) * (B, Seq_Len, 1) = (B, Seq_Len, Dim)
        # rsqrt: 1 / sqrt(x)
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x: torch.Tensor):
        # (Dim) * (B, Seq_Len, Dim) = (B, Seq_Len, Dim)
        return self.weight * self._norm(x.float()).type_as(x)


class MultiEmbedding(nn.Module):
    """Embedding for multiple quantization layers, summing up the embeddings of each layer."""

    def __init__(
        self,
        num_embeddings=1028,
        embedding_dim=1024,
        num_quantization_layers=8,
    ):
        super().__init__()
        self.embeddings = nn.ModuleList(
            [
                nn.Embedding(num_embeddings, embedding_dim)
                for _ in range(num_quantization_layers)
            ]
        )

        # initialize embeddings
        for i in range(num_quantization_layers):
            self.embeddings[i].weight.data.normal_(mean=0.0, std=0.02)
        self._is_hf_initialized = True  # disable automatic init

    def forward(self, input_ids):
        """Input: [num_quant, B, T] -> Output: [B, T, H]"""
        num_quant, B, T = input_ids.shape
        summed_embeddings = torch.zeros(
            B, T, self.embeddings[0].embedding_dim, device=input_ids.device
        )
        for i in range(num_quant):
            summed_embeddings += self.embeddings[i](input_ids[i])
        return summed_embeddings


class LlamaNARDecoderLayer(LlamaDecoderLayer):
    def __init__(self, config: LlamaConfig, layer_idx: int):
        """Override to adaptive layer norm"""
        super().__init__(config, layer_idx)  # init attention, mlp, etc.
        self.input_layernorm = LlamaAdaptiveRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )
        self.post_attention_layernorm = LlamaAdaptiveRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )


    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
    ) -> Tuple[
        torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
    ]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs
    


class LlamaNAR(LlamaModel):
    def __init__(
        self,
        hidden_size=1024,
        num_heads=16,
        num_layers=16,
        config=LlamaConfig(0, 256, 1024, 1, 1),
    ):

        super().__init__(config)
        self.layers = nn.ModuleList(
            [
                LlamaNARDecoderLayer(
                    config=LlamaConfig(hidden_size=hidden_size,num_attention_heads=num_heads,max_position_embeddings=4096,intermediate_size=hidden_size*4),
                    layer_idx=i,
                )
                for i in range(num_layers)
            ]
        )

        self.norm = LlamaAdaptiveRMSNorm(hidden_size)

        self.multi_embedding = MultiEmbedding(
            num_quantization_layers=8, embedding_dim=hidden_size
        )


        self.post_init()

    def _prepare_decoder_attention_mask(
        self, attention_mask, input_shape, inputs_embeds, past_key_values_length
    ):
        # create noncausal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None

        def _expand_mask(
            mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None
        ):
            """
            Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
            """
            bsz, src_len = mask.size()
            tgt_len = tgt_len if tgt_len is not None else src_len

            expanded_mask = (
                mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
            )

            inverted_mask = 1.0 - expanded_mask

            return inverted_mask.masked_fill(
                inverted_mask.to(torch.bool), torch.finfo(dtype).min
            )

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(
                attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
            ).to(inputs_embeds.device)
            combined_attention_mask = (
                expanded_attn_mask
                if combined_attention_mask is None
                else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        length: Optional[torch.LongTensor] = None,
    )-> Union[Tuple, BaseModelOutputWithPast]:
        
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict


        batch_size, seq_length, num_quant = input_ids.shape
        input_ids = input_ids.permute(2, 0, 1) # [num_quant, B, T]
        inputs_embeds = self.multi_embedding(input_ids)

        seq_length_with_past = seq_length
        past_key_values_length = 0

        if past_key_values is not None:
            past_key_values_length = past_key_values[0][0].shape[2]
            seq_length_with_past = seq_length_with_past + past_key_values_length

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(
                past_key_values_length,
                seq_length + past_key_values_length,
                dtype=torch.long,
                device=device,
            )
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            position_ids = position_ids.view(-1, seq_length).long()

        # embed positions
        if attention_mask is None:
            attention_mask = torch.ones(
                (batch_size, seq_length_with_past),
                dtype=torch.bool,
                device=inputs_embeds.device,
            )
        attention_mask = self._prepare_decoder_attention_mask(
            attention_mask,
            (batch_size, seq_length),
            inputs_embeds,
            past_key_values_length,
        )

        hidden_states = inputs_embeds

        if self.gradient_checkpointing and self.training:
            if use_cache:
                use_cache = False

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = () if use_cache else None

        for idx, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            past_key_value = (
                past_key_values[idx] if past_key_values is not None else None
            )

            if self.gradient_checkpointing and self.training:
                raise NotImplementedError

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, output_attentions, None)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),
                    hidden_states,
                    attention_mask,
                    position_ids,
                    None,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None

        return hidden_states

class LlamaNAREmb(LlamaModel):
    """LlamaNAR model that works directly with embeddings input.
    
    This variant of LlamaNAR takes pre-computed embeddings as input
    instead of token IDs that need to be embedded.
    """
    def __init__(
        self,
        hidden_size=1024,
        num_heads=16,
        num_layers=16,
        config=LlamaConfig(0, 256, 1024, 1, 1),
    ):

        super().__init__(config)
        self.layers = nn.ModuleList(
            [
                LlamaNARDecoderLayer(
                    config=LlamaConfig(hidden_size=hidden_size,num_attention_heads=num_heads,max_position_embeddings=4096,intermediate_size=hidden_size*4),
                    layer_idx=i,
                )
                for i in range(num_layers)
            ]
        )

        self.norm = LlamaAdaptiveRMSNorm(hidden_size)


        self.post_init()

    def _prepare_decoder_attention_mask(
        self, attention_mask, input_shape, inputs_embeds, past_key_values_length
    ):
        # create noncausal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None

        def _expand_mask(
            mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None
        ):
            """
            Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
            """
            bsz, src_len = mask.size()
            tgt_len = tgt_len if tgt_len is not None else src_len

            expanded_mask = (
                mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
            )

            inverted_mask = 1.0 - expanded_mask

            return inverted_mask.masked_fill(
                inverted_mask.to(torch.bool), torch.finfo(dtype).min
            )

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(
                attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
            ).to(inputs_embeds.device)
            combined_attention_mask = (
                expanded_attn_mask
                if combined_attention_mask is None
                else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    )-> torch.Tensor:
        """
        Returns:
            hidden_states: Tensor of shape (batch_size, sequence_length, hidden_size)
        """

        if inputs_embeds is None:
            raise ValueError("inputs_embeds must be provided for LlamaNAREmb")
            
        if input_ids is not None:
            warnings.warn("input_ids is ignored in LlamaNAREmb, use inputs_embeds instead")
        
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        batch_size, seq_length, hidden_size = inputs_embeds.shape

        seq_length_with_past = seq_length
        past_key_values_length = 0

        if past_key_values is not None:
            past_key_values_length = past_key_values[0][0].shape[2]
            seq_length_with_past = seq_length_with_past + past_key_values_length

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(
                past_key_values_length,
                seq_length + past_key_values_length,
                dtype=torch.long,
                device=device,
            )
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            position_ids = position_ids.view(-1, seq_length).long()

        # embed positions
        if attention_mask is None:
            attention_mask = torch.ones(
                (batch_size, seq_length_with_past),
                dtype=torch.bool,
                device=inputs_embeds.device,
            )
        attention_mask = self._prepare_decoder_attention_mask(
            attention_mask,
            (batch_size, seq_length),
            inputs_embeds,
            past_key_values_length,
        )

        hidden_states = inputs_embeds

        if self.gradient_checkpointing and self.training:
            if use_cache:
                use_cache = False

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = () if use_cache else None

        for idx, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            past_key_value = (
                past_key_values[idx] if past_key_values is not None else None
            )

            if self.gradient_checkpointing and self.training:
                raise NotImplementedError

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, output_attentions, None)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),
                    hidden_states,
                    attention_mask,
                    position_ids,
                    None,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None


        return hidden_states

if __name__ == '__main__':
    config = LlamaConfig(hidden_size=1024, num_attention_heads=8, num_hidden_layers=8)

    model = LlamaNAR(config=config)

    # 模拟输入数据
    batch_size = 2
    seq_length = 10
    n_q = 8
    input_ids = torch.randint(0, 1028, (batch_size, seq_length, n_q))  # 随机生成输入ID
    inputs_embeds = torch.randn(batch_size, seq_length, config.hidden_size)  # 随机生成输入嵌入
    attention_mask = torch.ones(batch_size, seq_length)  # 所有位置可见
    length = torch.tensor([4,10])  # 输入长度

    # 前向传播
    hidden_states, class_out = model(
        input_ids=input_ids,
        attention_mask=attention_mask,
        output_attentions=True,
        output_hidden_states=True,
        length=length
    )

    # 打印输出形状
    print("Hidden States Shape:", hidden_states.shape)  # 输出隐藏状态形状
    print('Class output Shape:', class_out.shape)