Update app.py
Browse files
app.py
CHANGED
@@ -64,7 +64,6 @@ def get_predictions(y_prediction_encoded):
|
|
64 |
return predicted_label_indices
|
65 |
|
66 |
def predict(image):
|
67 |
-
|
68 |
# Steps to get prediction
|
69 |
sample_image_resized = resize_image(image)
|
70 |
y_pred = ensemble_predict(sample_image_resized)
|
@@ -74,14 +73,19 @@ def predict(image):
|
|
74 |
colors = ['cyan', 'yellow', 'magenta', 'green', 'blue', 'black', 'white']
|
75 |
# Create a ListedColormap
|
76 |
cmap = ListedColormap(colors)
|
77 |
-
# Create colorbar and set ticks and ticklabels
|
78 |
-
cbar = plt.colorbar(ticks=np.arange(1, 8))
|
79 |
-
cbar.set_ticklabels(['Urban', 'Agriculture', 'Range Land', 'Forest', 'Water', 'Barren', 'Unknown'])
|
80 |
|
81 |
-
|
82 |
-
# Create a figure without saving it to a file
|
83 |
fig, ax = plt.subplots()
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
# Convert the figure to a PIL Image
|
87 |
image_buffer = io.BytesIO()
|
|
|
64 |
return predicted_label_indices
|
65 |
|
66 |
def predict(image):
|
|
|
67 |
# Steps to get prediction
|
68 |
sample_image_resized = resize_image(image)
|
69 |
y_pred = ensemble_predict(sample_image_resized)
|
|
|
73 |
colors = ['cyan', 'yellow', 'magenta', 'green', 'blue', 'black', 'white']
|
74 |
# Create a ListedColormap
|
75 |
cmap = ListedColormap(colors)
|
|
|
|
|
|
|
76 |
|
77 |
+
# Create a figure
|
|
|
78 |
fig, ax = plt.subplots()
|
79 |
+
|
80 |
+
# Display the image
|
81 |
+
ax.imshow(sample_image_resized)
|
82 |
+
|
83 |
+
# Display the predictions using the specified colormap
|
84 |
+
cax = ax.imshow(y_pred, cmap=cmap, vmin=1, vmax=7, alpha=0.5)
|
85 |
+
|
86 |
+
# Create colorbar and set ticks and ticklabels
|
87 |
+
cbar = plt.colorbar(cax, ticks=np.arange(1, 8))
|
88 |
+
cbar.set_ticklabels(['Urban', 'Agriculture', 'Range Land', 'Forest', 'Water', 'Barren', 'Unknown'])
|
89 |
|
90 |
# Convert the figure to a PIL Image
|
91 |
image_buffer = io.BytesIO()
|