Spaces:
Runtime error
Runtime error
Amir Zait
commited on
Commit
β’
5a87575
1
Parent(s):
8439859
unify files
Browse files- app.py +46 -6
- image_generator.py +0 -44
app.py
CHANGED
@@ -1,13 +1,16 @@
|
|
1 |
-
from transformers import AutoProcessor, AutoModelForCTC
|
2 |
-
from transformers import pipeline
|
3 |
-
|
4 |
import soundfile as sf
|
5 |
import gradio as gr
|
6 |
-
import
|
7 |
-
import sox
|
8 |
import os
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
from
|
|
|
|
|
|
|
11 |
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
|
@@ -17,6 +20,43 @@ asr_model = AutoModelForCTC.from_pretrained("imvladikon/wav2vec2-xls-r-300m-hebr
|
|
17 |
|
18 |
he_en_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-he-en")
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def convert(inputfile, outfile):
|
21 |
sox_tfm = sox.Transformer()
|
22 |
sox_tfm.set_output_format(
|
|
|
|
|
|
|
|
|
1 |
import soundfile as sf
|
2 |
import gradio as gr
|
3 |
+
import numpy as np
|
|
|
4 |
import os
|
5 |
+
from PIL import Image
|
6 |
+
import random
|
7 |
+
import sox
|
8 |
+
import torch
|
9 |
|
10 |
+
from transformers import AutoProcessor, AutoModelForCTC
|
11 |
+
from transformers import pipeline
|
12 |
+
from dalle_mini import DalleBart, DalleBartProcessor
|
13 |
+
from vqgan_jax.modeling_flax_vqgan import VQModel
|
14 |
|
15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
|
|
|
20 |
|
21 |
he_en_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-he-en")
|
22 |
|
23 |
+
# Model references
|
24 |
+
# dalle-mini, mega too large
|
25 |
+
# DALLE_MODEL = "dalle-mini/dalle-mini/mega-1-fp16:latest" # can be wandb artifact or π€ Hub or local folder or google bucket
|
26 |
+
DALLE_MODEL = "dalle-mini/dalle-mini/mini-1:v0"
|
27 |
+
DALLE_COMMIT_ID = None
|
28 |
+
|
29 |
+
# VQGAN model
|
30 |
+
VQGAN_REPO = "dalle-mini/vqgan_imagenet_f16_16384"
|
31 |
+
VQGAN_COMMIT_ID = "e93a26e7707683d349bf5d5c41c5b0ef69b677a9"
|
32 |
+
|
33 |
+
model = DalleBart.from_pretrained(DALLE_MODEL, revision=DALLE_COMMIT_ID)
|
34 |
+
vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)
|
35 |
+
processor = DalleBartProcessor.from_pretrained(DALLE_MODEL, revision=DALLE_COMMIT_ID)
|
36 |
+
|
37 |
+
def generate_image(text):
|
38 |
+
tokenized_prompt = processor([text])
|
39 |
+
|
40 |
+
gen_top_k = None
|
41 |
+
gen_top_p = None
|
42 |
+
temperature = 0.85
|
43 |
+
cond_scale = 3.0
|
44 |
+
|
45 |
+
encoded_images = model.generate(
|
46 |
+
tokenized_prompt,
|
47 |
+
random.randint(0, 1e7),
|
48 |
+
model.params,
|
49 |
+
gen_top_k,
|
50 |
+
gen_top_p,
|
51 |
+
temperature,
|
52 |
+
cond_scale,
|
53 |
+
)
|
54 |
+
encoded_images = encoded_images.sequences[..., 1:]
|
55 |
+
decoded_images = model.decode(encoded_images, vqgan.params)
|
56 |
+
decoded_images = decoded_images.clip(0.0, 1.0).reshape((-1, 256, 256, 3))
|
57 |
+
img = decoded_images[0]
|
58 |
+
return Image.fromarray(np.asarray(img * 255, dtype=np.uint8))
|
59 |
+
|
60 |
def convert(inputfile, outfile):
|
61 |
sox_tfm = sox.Transformer()
|
62 |
sox_tfm.set_output_format(
|
image_generator.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import os
|
3 |
-
from PIL import Image
|
4 |
-
import random
|
5 |
-
|
6 |
-
from dalle_mini import DalleBart, DalleBartProcessor
|
7 |
-
from vqgan_jax.modeling_flax_vqgan import VQModel
|
8 |
-
|
9 |
-
# Model references
|
10 |
-
# dalle-mini, mega too large
|
11 |
-
# DALLE_MODEL = "dalle-mini/dalle-mini/mega-1-fp16:latest" # can be wandb artifact or π€ Hub or local folder or google bucket
|
12 |
-
DALLE_MODEL = "dalle-mini/dalle-mini/mini-1:v0"
|
13 |
-
DALLE_COMMIT_ID = None
|
14 |
-
|
15 |
-
# VQGAN model
|
16 |
-
VQGAN_REPO = "dalle-mini/vqgan_imagenet_f16_16384"
|
17 |
-
VQGAN_COMMIT_ID = "e93a26e7707683d349bf5d5c41c5b0ef69b677a9"
|
18 |
-
|
19 |
-
model = DalleBart.from_pretrained(DALLE_MODEL, revision=DALLE_COMMIT_ID)
|
20 |
-
vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)
|
21 |
-
processor = DalleBartProcessor.from_pretrained(DALLE_MODEL, revision=DALLE_COMMIT_ID)
|
22 |
-
|
23 |
-
def generate_image(text):
|
24 |
-
tokenized_prompt = processor([text])
|
25 |
-
|
26 |
-
gen_top_k = None
|
27 |
-
gen_top_p = None
|
28 |
-
temperature = 0.85
|
29 |
-
cond_scale = 3.0
|
30 |
-
|
31 |
-
encoded_images = model.generate(
|
32 |
-
tokenized_prompt,
|
33 |
-
random.randint(0, 1e7),
|
34 |
-
model.params,
|
35 |
-
gen_top_k,
|
36 |
-
gen_top_p,
|
37 |
-
temperature,
|
38 |
-
cond_scale,
|
39 |
-
)
|
40 |
-
encoded_images = encoded_images.sequences[..., 1:]
|
41 |
-
decoded_images = model.decode(encoded_images, vqgan.params)
|
42 |
-
decoded_images = decoded_images.clip(0.0, 1.0).reshape((-1, 256, 256, 3))
|
43 |
-
img = decoded_images[0]
|
44 |
-
return Image.fromarray(np.asarray(img * 255, dtype=np.uint8))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|