Spaces:
Runtime error
Runtime error
File size: 8,648 Bytes
bae498f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import numpy as np
def get_simple_data(num_points, max_domain):
full_data = []
for i in range(num_points):
new_datum = [np.random.uniform(0, max_domain),
np.random.uniform(0, max_domain),
np.random.uniform(0, max_domain)]
full_data.append(new_datum)
return full_data
def get_simple_var_names():
return ["a", "b", "c"]
def get_xy_var_names():
return ["x", "y"]
def get_angle_data(num_data):
full_data = []
for i in range(num_data):
theta = np.random.uniform(0, 2 * np.pi)
while np.abs(theta - np.pi / 2) < 1e-3 or np.abs(theta - 3 * np.pi / 2) < 1e-3:
theta = np.random.uniform(0, 2 * np.pi)
new_datum = [np.sin(theta), np.cos(theta), np.tan(theta)]
full_data.append(new_datum)
return full_data
def get_fake_angles(num_data):
full_data = []
for i in range(num_data):
[s, c] = np.random.uniform(-1, 1, 2)
t = np.random.uniform(-5, 5)
new_datum = [s, c, t]
full_data.append(new_datum)
return full_data
def get_xy_data(num_data, max_domain):
full_data = []
for i in range(num_data):
# t = np.random.uniform(0, 2 * np.pi)
# r = 2 + 3 * np.cos(t)
# # r = 5 * np.cos(2*t)/np.cos(t)
#
# x = r * np.cos(t)
# y = r * np.sin(t)
y = np.random.uniform(-3, 2)
sign = np.random.choice([-1, 1])
x = sign * np.sqrt(np.abs(2 * np.sin(y) + 5 - y ** 3))
full_data.append([x, y])
return full_data
def get_fake_xy_data(num_data, max_domain):
full_data = []
for i in range(num_data):
[x, y] = np.random.uniform(0, max_domain, 2)
full_data.append([x, y])
return full_data
def get_triangle_data(num_triangles, max_domain):
full_data = []
for i in range(num_triangles):
[x1, y1, x2, y2, x3, y3] = np.random.uniform(0, max_domain, 6)
a = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
b = np.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
c = np.sqrt((x1 - x3) ** 2 + (y1 - y3) ** 2)
va = np.arccos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c))
vb = np.arccos((c ** 2 + a ** 2 - b ** 2) / (2 * a * c))
vc = np.arccos((a ** 2 + b ** 2 - c ** 2) / (2 * b * a))
sa, sb, sc = np.sin([va, vb, vc])
ca, cb, cc = np.cos([va, vb, vc])
ta, tb, tc = np.tan([va, vb, vc])
new_datum = []
# new_datum.extend([x1, x2, x3])
# new_datum.extend([y1, y2, y3])
new_datum.extend([a, b, c])
# new_datum.extend([va, vb, vc])
# new_datum.extend([sa, sb, sc])
# new_datum.extend([ca, cb, cc])
# new_datum.extend([ta, tb, tc])
full_data.append(new_datum)
return full_data
def get_right_triangle_data(num_triangles, max_domain):
full_data = []
for i in range(num_triangles):
[s1, s2] = np.random.uniform(0, max_domain, 2)
c = max(s1, s2)
a = min(s1, s2)
b = np.sqrt(c * c - a * a)
va = np.arccos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c))
vb = np.arccos((c ** 2 + a ** 2 - b ** 2) / (2 * a * c))
vc = np.arccos((a ** 2 + b ** 2 - c ** 2) / (2 * b * a))
sa, sb, sc = np.sin([va, vb, vc])
ca, cb, cc = np.cos([va, vb, vc])
ta, tb, tc = np.tan([va, vb, vc])
new_datum = []
new_datum.extend([a, b, c])
# new_datum.extend([sa, sb, sc])
# new_datum.extend([ca, cb, cc])
# new_datum.extend([ta, tb, tc])
full_data.append(new_datum)
return full_data
def get_fake_triangle_data(num_triangles, max_domain):
full_data = []
for i in range(num_triangles):
[a, b, c] = np.random.uniform(0, max_domain, 3)
[sa, sb, sc] = np.random.uniform(-1, 1, 3)
[ca, cb, cc] = np.random.uniform(-1, 1, 3)
[ta, tb, tc] = np.random.uniform(-5, 5, 3)
new_datum = []
new_datum.extend([a, b, c])
# new_datum.extend([va, vb, vc])
new_datum.extend([sa, sb, sc])
new_datum.extend([ca, cb, cc])
new_datum.extend([ta, tb, tc])
# new_datum.extend([va, vb, vc])
# new_datum.extend([a, 2*a])
# new_datum.extend([ta, tb, tc])
full_data.append(new_datum)
return full_data
def get_non_triangle_data(num_triangles, max_domain):
full_data = []
for i in range(num_triangles):
[x1, y1, x2, y2, x3, y3, x4, y4] = np.random.uniform(0, max_domain, 8)
a = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
b = np.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
c = np.sqrt((x4 - x3) ** 2 + (y4 - y3) ** 2)
d = np.sqrt((x1 - x4) ** 2 + (y1 - y4) ** 2)
e24 = np.sqrt((x4 - x2) ** 2 + (y4 - y2) ** 2)
e13 = np.sqrt((x3 - x1) ** 2 + (y3 - y1) ** 2)
va = np.arccos((b ** 2 + c ** 2 - e24 ** 2) / (2 * b * c))
vb = np.arccos((d ** 2 + c ** 2 - e13 ** 2) / (2 * d * c))
vc = np.arccos((d ** 2 + a ** 2 - e24 ** 2) / (2 * d * a))
sa, sb, sc = np.sin([va, vb, vc])
ca, cb, cc = np.cos([va, vb, vc])
ta, tb, tc = np.tan([va, vb, vc])
new_datum = []
new_datum.extend([a, b, c])
# new_datum.extend([va, vb, vc])
new_datum.extend([sa, sb, sc])
new_datum.extend([ca, cb, cc])
# new_datum.extend([ta, tb, tc])
full_data.append(new_datum)
return full_data
def get_var_names():
# var_names = ["a", "b", "c"]
var_names = []
var_names.extend(["sin(x)", "cos(x)", "tan(x)"])
# var_names.extend(["A", "B", "C"])
var_names.extend(["sin(A)", "sin(B)", "sin(C)"])
var_names.extend(["cos(A)", "cos(B)", "cos(C)"])
var_names.extend(["tan(A)", "tan(B)", "tan(C)"])
return var_names
#
# our_results = []
#
# settings.true_eqn = "0*x1"
# settings.num_features = num_smp_features
# settings.show_output = False
# settings.keep_logs = False
#
# model = SFL()
#
# for trial_round in range(num_trials):
# sampled_features = np.random.choice(range(len(full_data[0])), num_smp_features, replace=True)
#
# # sampled_features = [3,6]
# data = [[row[smp_i] for smp_i in sampled_features] for row in full_data]
# smp_var_names = [var_names[smp_i] for smp_i in sampled_features]
# print("Trial round {} of {}.".format(trial_round + 1, num_trials))
# print(" Using variables {}.".format(smp_var_names))
#
# settings.fixed_x = []
# settings.fixed_y = []
# for line in data:
# settings.fixed_x.append(line)
# settings.fixed_y.append(0)
#
# model.reset(var_names=smp_var_names)
#
# # train_X = DataUtils.generate_data(settings.train_N, n_vars=model.n_input_variables,
# # avoid_zero=settings.avoid_zero)
# # valid_X = DataUtils.generate_data(settings.train_N, n_vars=model.n_input_variables,
# # avoid_zero=settings.avoid_zero)
# # test_X = DataUtils.generate_data(settings.test_N, n_vars=model.n_input_variables,
# # min_x=settings.test_scope[0],
# # max_x=settings.test_scope[1])
# train_X = np.array(data)
# valid_X = np.array(data)
# test_X = np.array(data)
#
# train_X = train_X.reshape([-1, settings.num_dims_per_feature, settings.num_features])
# valid_X = valid_X.reshape([-1, settings.num_dims_per_feature, settings.num_features])
# test_X = test_X.reshape([-1, settings.num_dims_per_feature, settings.num_features])
#
# start_time = time.time()
# best_model, best_iter, best_err = model.repeat_train(train_X,
# settings.num_train_repeat_processes,
# test_x=test_X)
# running_time = time.time() - start_time
#
# print("best_model: {}".format(best_model))
# print("----------------------")
# print("Finished this experiment. Took {:.2f} minutes.\n".format(running_time / 60))
#
# our_results.append([best_err, best_model, smp_var_names])
# our_results = sorted(our_results, key=lambda entry: entry[0])
#
# output_file = open("images/triangle_output.txt", "w")
# for entry in our_results:
# output_file.write("{}\n{}\n{}\n\n".format(entry[0], entry[2], entry[1]))
# output_file.close()
#
# print("Final solution found at attempt {}:".format(best_iter))
# print("y = {}".format(best_model))
# print("Test error: {}".format(best_err))
# if best_err < 0.02:
# print("Attained error less than 0.02 - great!")
# print()
|