File size: 6,469 Bytes
04c25c5
c745c39
04c25c5
9b9128d
bcb52b4
58c547c
c745c39
bcb52b4
58c547c
 
 
 
f69f8fb
bcb52b4
 
 
 
 
1d73b44
c745c39
bcb52b4
21544ca
0651449
bcb52b4
0651449
 
 
bcb52b4
 
0651449
 
 
73ff9c9
e9b47ff
 
0651449
73ff9c9
bcb52b4
0651449
bcb52b4
 
e9b47ff
1d73b44
7c4e62e
bcb52b4
7c4e62e
91e6940
 
 
 
 
 
bcb52b4
 
 
04c25c5
 
bcb52b4
5d5363d
 
bcb52b4
5d5363d
bcb52b4
 
 
5d5363d
bcb52b4
 
 
5d5363d
 
bcb52b4
5d5363d
bcb52b4
 
 
 
5d5363d
0651449
bcb52b4
0651449
bcb52b4
 
 
a68d7a5
bcb52b4
 
a68d7a5
bcb52b4
5d5363d
 
 
bcb52b4
e8665df
8904a89
bcb52b4
 
 
 
 
 
 
04c25c5
d7942b7
bcb52b4
 
5d5363d
bcb52b4
 
 
61da65e
 
bcb52b4
04c25c5
bcb52b4
0d86f5d
04c25c5
 
 
 
 
61da65e
 
 
 
 
bcb52b4
 
 
 
 
04c25c5
 
7c4e62e
0d86f5d
bcb52b4
 
 
 
 
 
 
 
 
 
 
7c4e62e
 
bcb52b4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient
import random
from deep_translator import GoogleTranslator
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")

models=[
    "google/gemma-7b",
    "google/gemma-7b-it",
    "google/gemma-2b",
    "google/gemma-2b-it"
]
clients=[
InferenceClient(models[0]),
InferenceClient(models[1]),
InferenceClient(models[2]),
InferenceClient(models[3]),
]

VERBOSE=False

def load_models(inp):
    if VERBOSE==True:    
        print(type(inp))
        print(inp)
        print(models[inp])
    #client_z.clear()
    #client_z.append(InferenceClient(models[inp]))
    return gr.update(label=models[inp])

def format_prompt(message, history, cust_p):
    prompt = "<s>"
    if history:
        for user_prompt, bot_response in history:
            prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
            prompt += f"<start_of_turn>model{bot_response}<end_of_turn></s>"
            if VERBOSE==True:
                print(prompt)
    #prompt += f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
    prompt+=cust_p.replace("USER_INPUT",message)
    return prompt

def chat_inf(system_prompt,prompt,history,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,cust_p,translate_fa):
    #token max=8192
    if(translate_fa == True):
        if(len(prompt) > 2000):
            translatedtext1 = GoogleTranslator(source='auto', target='en').translate(prompt[0:2000])
            translatedtext2 = GoogleTranslator(source='auto', target='en').translate(prompt[2000:(len(prompt))])
            prompt = translatedtext1 + translatedtext2
        else:
            prompt = GoogleTranslator(source='auto', target='en').translate(prompt)
    print(client_choice)
    hist_len=0
    client=clients[int(client_choice)-1]
    if not history:
        history = []
        hist_len=0
    if not memory:
        memory = []
        mem_len=0        
    if memory:
        for ea in memory[0-chat_mem:]:
            hist_len+=len(str(ea))
    in_len=len(system_prompt+prompt)+hist_len

    if (in_len+tokens) > 8000:
        history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
        yield history,memory
    else:
        generate_kwargs = dict(
            #temperature=temp,
            max_new_tokens=tokens,
            #top_p=top_p,
            #repetition_penalty=rep_p,
            #do_sample=True,
            #seed=seed,
        )
        if system_prompt:
            formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0-chat_mem:],cust_p)
        else:
            formatted_prompt = format_prompt(prompt, memory[0-chat_mem:],cust_p)
        
        
        chat = [
    { "role": "user", "content": f"{formatted_prompt}" },
    ]

        stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
        output = ""
        for response in stream:
            output += response.token.text
            yield [(prompt,output)],memory
        if(translate_fa == True):
            output = GoogleTranslator(source='auto', target='fa').translate(output)
        history.append((prompt,output))
        memory.append((prompt,output))
        yield history,memory
        
    if VERBOSE==True:
        print("\n######### HIST "+str(in_len))
        print("\n######### TOKENS "+str(tokens))        

def clear_fn():
    return None,None,None,None
rand_val=random.randint(1,1111111111111111)

def check_rand(inp,val):
    if inp==True:
        return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
    else:
        return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
    
with gr.Blocks() as app:
    memory=gr.State()
    chat_b = gr.Chatbot(height=500)
    with gr.Group():
        with gr.Row():
            with gr.Column(scale=3):
                inp = gr.Textbox(label="Prompt")
                sys_inp = gr.Textbox(label="System Prompt (optional)")
                with gr.Row():
                    with gr.Column(scale=2):
                        btn = gr.Button("Chat")
                    with gr.Column(scale=1):
                        with gr.Group():
                            stop_btn=gr.Button("Stop")
                            clear_btn=gr.Button("Clear")                
                client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True)
                with gr.Accordion("Prompt Format",open=False):
                    custom_prompt=gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=5,value="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model")
            with gr.Column(scale=1):
                with gr.Group():
                    translate_fa = gr.Checkbox(label="Translate to Persian", value=True)
                    rand = gr.Checkbox(label="Random Seed", value=True)
                    seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
                    tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
                    temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
                    top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
                    rep_p=gr.Slider(label="Repetition Penalty",step=0.1, minimum=0.1, maximum=2.0, value=1.0)
                    chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4)

    
    client_choice.change(load_models,client_choice,[chat_b])
    app.load(load_models,client_choice,[chat_b])
    
    chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt,translate_fa],[chat_b,memory])
    go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt,translate_fa],[chat_b,memory])

    clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b,memory])
app.queue(default_concurrency_limit=10).launch()