File size: 4,882 Bytes
42b72fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e588ba9
42b72fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import streamlit as st
from langchain.llms import HuggingFaceHub
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate

class UserInterface():

    def __init__(self, ):
        st.warning("Warning: Some models may not work and some models may require GPU to run")
        st.text("An Open Source Chat Application")
        st.header("Open LLMs")

        # self.API_KEY = st.sidebar.text_input(
        #     'API Key',
        #     type='password',
        #     help="Type in your HuggingFace API key to use this app"
        # )

        models_name = (
            "HuggingFaceH4/zephyr-7b-beta",
            "Sharathhebbar24/chat_gpt2",
            "Sharathhebbar24/convo_bot_gpt_v1",
            "Open-Orca/Mistral-7B-OpenOrca",
            "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
            "Sharathhebbar24/llama_7b_chat",
            "CultriX/MistralTrix-v1",
            "ahxt/LiteLlama-460M-1T",
        )
        self.models = st.sidebar.selectbox(
            label="Choose your models",
            options=models_name,
            help="Choose your model",
        )

        self.temperature = st.sidebar.slider(
            label='Temperature',
            min_value=0.1,
            max_value=1.0,
            step=0.1,
            value=0.5,
            help="Set the temperature to get accurate or random result"
        )

        self.max_token_length = st.sidebar.slider(
            label="Token Length",
            min_value=32,
            max_value=2048,
            step=16,
            value=64,
            help="Set max tokens to generate maximum amount of text output"
        )


        self.model_kwargs = {
            "temperature": self.temperature,
            "max_new_tokens": self.max_token_length
        }

        os.environ['HUGGINGFACEHUB_API_TOKEN'] = os.getenv("amira")

    
    def form_data(self):

        try:
            # if not self.API_KEY.startswith('hf_'):
            #     st.warning('Please enter your API key!', icon='⚠')
            #     text_input_visibility = True
            # else:
            #     text_input_visibility = False
            text_input_visibility = False
            

            if "messages" not in st.session_state:
                    st.session_state.messages = []

            st.write(f"You are using {self.models} model")

            for message in st.session_state.messages:
                with st.chat_message(message.get('role')):
                    st.write(message.get("content"))
            
            context = st.sidebar.text_input(
                 label="Context",
                 help="Context lets you know on what the answer should be generated"
                 )

        
            question = st.chat_input(
                 key="question",
                 disabled=text_input_visibility
            )

            template = f"<|system|>\nYou are a intelligent chatbot and expertise in {context}.</s>\n<|user|>\n{question}.\n<|assistant|>"

            # template = """
            # Answer the question based on the context, if you don't know then output "Out of Context"
            # Context: {context}
            # Question: {question}

            # Answer: 
            # """
            prompt = PromptTemplate(
                template=template,
                input_variables=[
                    'question',
                    'context'
                ]
            )
            llm = HuggingFaceHub(
                repo_id = self.models,
                model_kwargs = self.model_kwargs
            )

            if question:
                llm_chain = LLMChain(
                    prompt=prompt,
                    llm=llm,
                )

                result = llm_chain.run({
                    "question": question,
                    "context": context
                })

                if "Out of Context" in result:
                    result = "Out of Context"
                st.session_state.messages.append(
                    {
                        "role":"user",
                        "content": f"Context: {context}\n\nQuestion: {question}"
                    }
                )
                with st.chat_message("user"):
                    st.write(f"Context: {context}\n\nQuestion: {question}")
                
                if question.lower() == "clear":
                    del st.session_state.messages
                    return
                
                st.session_state.messages.append(
                    {
                        "role": "assistant",
                        "content": result
                    }
                )
                with st.chat_message('assistant'):
                    st.markdown(result)

        except Exception as e:
            st.error(e, icon="🚨")

model = UserInterface()
model.form_data()