add live preview (#17)
Browse files- add live preview (f864900e1752e56e1e07b8055af2e0c2d4b0d068)
- Update app.py (3a748d48929b9031cf541eeedd0a484f757b7d85)
- app.py +15 -7
- live_preview_helpers.py +165 -0
app.py
CHANGED
@@ -5,19 +5,23 @@ import logging
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import spaces
|
8 |
-
from diffusers import DiffusionPipeline
|
|
|
9 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
10 |
import copy
|
11 |
import random
|
12 |
import time
|
13 |
|
|
|
|
|
14 |
# Load LoRAs from JSON file
|
15 |
with open('loras.json', 'r') as f:
|
16 |
loras = json.load(f)
|
17 |
|
18 |
# Initialize the base model
|
19 |
-
|
20 |
-
pipe = DiffusionPipeline.from_pretrained(
|
|
|
21 |
|
22 |
MAX_SEED = 2**32-1
|
23 |
|
@@ -60,19 +64,23 @@ def update_selection(evt: gr.SelectData, width, height):
|
|
60 |
@spaces.GPU(duration=70)
|
61 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
62 |
pipe.to("cuda")
|
|
|
|
|
63 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
64 |
|
65 |
with calculateDuration("Generating image"):
|
66 |
-
|
67 |
-
image = pipe(
|
68 |
prompt=prompt_mash,
|
|
|
69 |
num_inference_steps=steps,
|
70 |
-
guidance_scale=cfg_scale,
|
71 |
width=width,
|
72 |
height=height,
|
|
|
73 |
generator=generator,
|
|
|
74 |
joint_attention_kwargs={"scale": lora_scale},
|
75 |
-
)
|
|
|
76 |
return image
|
77 |
|
78 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import spaces
|
8 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny
|
9 |
+
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
10 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
11 |
import copy
|
12 |
import random
|
13 |
import time
|
14 |
|
15 |
+
dtype = torch.bfloat16
|
16 |
+
|
17 |
# Load LoRAs from JSON file
|
18 |
with open('loras.json', 'r') as f:
|
19 |
loras = json.load(f)
|
20 |
|
21 |
# Initialize the base model
|
22 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
23 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
|
24 |
+
torch.cuda.empty_cache()
|
25 |
|
26 |
MAX_SEED = 2**32-1
|
27 |
|
|
|
64 |
@spaces.GPU(duration=70)
|
65 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
66 |
pipe.to("cuda")
|
67 |
+
if randomize_seed:
|
68 |
+
seed = random.randint(0, MAX_SEED)
|
69 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
70 |
|
71 |
with calculateDuration("Generating image"):
|
72 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
|
|
73 |
prompt=prompt_mash,
|
74 |
+
guidance_scale=guidance_scale,
|
75 |
num_inference_steps=steps,
|
|
|
76 |
width=width,
|
77 |
height=height,
|
78 |
+
guidance_scale=cfg_scale,
|
79 |
generator=generator,
|
80 |
+
output_type="pil",
|
81 |
joint_attention_kwargs={"scale": lora_scale},
|
82 |
+
):
|
83 |
+
yield img, seed
|
84 |
return image
|
85 |
|
86 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
live_preview_helpers.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler
|
4 |
+
from typing import Any, Dict, List, Optional, Union
|
5 |
+
|
6 |
+
# Helper functions
|
7 |
+
def calculate_shift(
|
8 |
+
image_seq_len,
|
9 |
+
base_seq_len: int = 256,
|
10 |
+
max_seq_len: int = 4096,
|
11 |
+
base_shift: float = 0.5,
|
12 |
+
max_shift: float = 1.16,
|
13 |
+
):
|
14 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
15 |
+
b = base_shift - m * base_seq_len
|
16 |
+
mu = image_seq_len * m + b
|
17 |
+
return mu
|
18 |
+
|
19 |
+
def retrieve_timesteps(
|
20 |
+
scheduler,
|
21 |
+
num_inference_steps: Optional[int] = None,
|
22 |
+
device: Optional[Union[str, torch.device]] = None,
|
23 |
+
timesteps: Optional[List[int]] = None,
|
24 |
+
sigmas: Optional[List[float]] = None,
|
25 |
+
**kwargs,
|
26 |
+
):
|
27 |
+
if timesteps is not None and sigmas is not None:
|
28 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
29 |
+
if timesteps is not None:
|
30 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
31 |
+
timesteps = scheduler.timesteps
|
32 |
+
num_inference_steps = len(timesteps)
|
33 |
+
elif sigmas is not None:
|
34 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
35 |
+
timesteps = scheduler.timesteps
|
36 |
+
num_inference_steps = len(timesteps)
|
37 |
+
else:
|
38 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
39 |
+
timesteps = scheduler.timesteps
|
40 |
+
return timesteps, num_inference_steps
|
41 |
+
|
42 |
+
# FLUX pipeline function
|
43 |
+
@torch.inference_mode()
|
44 |
+
def flux_pipe_call_that_returns_an_iterable_of_images(
|
45 |
+
self,
|
46 |
+
prompt: Union[str, List[str]] = None,
|
47 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
48 |
+
height: Optional[int] = None,
|
49 |
+
width: Optional[int] = None,
|
50 |
+
num_inference_steps: int = 28,
|
51 |
+
timesteps: List[int] = None,
|
52 |
+
guidance_scale: float = 3.5,
|
53 |
+
num_images_per_prompt: Optional[int] = 1,
|
54 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
55 |
+
latents: Optional[torch.FloatTensor] = None,
|
56 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
57 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
58 |
+
output_type: Optional[str] = "pil",
|
59 |
+
return_dict: bool = True,
|
60 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
61 |
+
max_sequence_length: int = 512,
|
62 |
+
):
|
63 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
64 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
65 |
+
|
66 |
+
# 1. Check inputs
|
67 |
+
self.check_inputs(
|
68 |
+
prompt,
|
69 |
+
prompt_2,
|
70 |
+
height,
|
71 |
+
width,
|
72 |
+
prompt_embeds=prompt_embeds,
|
73 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
74 |
+
max_sequence_length=max_sequence_length,
|
75 |
+
)
|
76 |
+
|
77 |
+
self._guidance_scale = guidance_scale
|
78 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
79 |
+
self._interrupt = False
|
80 |
+
|
81 |
+
# 2. Define call parameters
|
82 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
83 |
+
device = self._execution_device
|
84 |
+
|
85 |
+
# 3. Encode prompt
|
86 |
+
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
87 |
+
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
88 |
+
prompt=prompt,
|
89 |
+
prompt_2=prompt_2,
|
90 |
+
prompt_embeds=prompt_embeds,
|
91 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
92 |
+
device=device,
|
93 |
+
num_images_per_prompt=num_images_per_prompt,
|
94 |
+
max_sequence_length=max_sequence_length,
|
95 |
+
lora_scale=lora_scale,
|
96 |
+
)
|
97 |
+
# 4. Prepare latent variables
|
98 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
99 |
+
latents, latent_image_ids = self.prepare_latents(
|
100 |
+
batch_size * num_images_per_prompt,
|
101 |
+
num_channels_latents,
|
102 |
+
height,
|
103 |
+
width,
|
104 |
+
prompt_embeds.dtype,
|
105 |
+
device,
|
106 |
+
generator,
|
107 |
+
latents,
|
108 |
+
)
|
109 |
+
# 5. Prepare timesteps
|
110 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
111 |
+
image_seq_len = latents.shape[1]
|
112 |
+
mu = calculate_shift(
|
113 |
+
image_seq_len,
|
114 |
+
self.scheduler.config.base_image_seq_len,
|
115 |
+
self.scheduler.config.max_image_seq_len,
|
116 |
+
self.scheduler.config.base_shift,
|
117 |
+
self.scheduler.config.max_shift,
|
118 |
+
)
|
119 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
120 |
+
self.scheduler,
|
121 |
+
num_inference_steps,
|
122 |
+
device,
|
123 |
+
timesteps,
|
124 |
+
sigmas,
|
125 |
+
mu=mu,
|
126 |
+
)
|
127 |
+
self._num_timesteps = len(timesteps)
|
128 |
+
|
129 |
+
# Handle guidance
|
130 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
131 |
+
|
132 |
+
# 6. Denoising loop
|
133 |
+
for i, t in enumerate(timesteps):
|
134 |
+
if self.interrupt:
|
135 |
+
continue
|
136 |
+
|
137 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
138 |
+
|
139 |
+
noise_pred = self.transformer(
|
140 |
+
hidden_states=latents,
|
141 |
+
timestep=timestep / 1000,
|
142 |
+
guidance=guidance,
|
143 |
+
pooled_projections=pooled_prompt_embeds,
|
144 |
+
encoder_hidden_states=prompt_embeds,
|
145 |
+
txt_ids=text_ids,
|
146 |
+
img_ids=latent_image_ids,
|
147 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
148 |
+
return_dict=False,
|
149 |
+
)[0]
|
150 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
151 |
+
|
152 |
+
# Yield intermediate result
|
153 |
+
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
154 |
+
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
155 |
+
image = self.vae.decode(latents_for_image, return_dict=False)[0]
|
156 |
+
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
157 |
+
torch.cuda.empty_cache()
|
158 |
+
|
159 |
+
# Final image
|
160 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
161 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
162 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
163 |
+
self.maybe_free_model_hooks()
|
164 |
+
torch.cuda.empty_cache()
|
165 |
+
return self.image_processor.postprocess(image, output_type=output_type)[0], 0
|