Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoModelForSeq2SeqLM,
|
4 |
import time
|
5 |
import sys
|
6 |
import traceback
|
@@ -9,40 +9,32 @@ import traceback
|
|
9 |
error_message = ""
|
10 |
|
11 |
# Load the model and tokenizer from Hugging Face
|
12 |
-
model_name = "ambrosfitz/history-qa-t5-
|
13 |
try:
|
14 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
15 |
-
tokenizer =
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
model.to(device)
|
18 |
except Exception as e:
|
19 |
error_message = f"Error loading model or tokenizer: {str(e)}\n{traceback.format_exc()}"
|
20 |
-
|
21 |
|
22 |
def generate_qa(text, max_length=512):
|
23 |
try:
|
24 |
-
input_text = f"Generate question: {text}"
|
25 |
input_ids = tokenizer(input_text, return_tensors="pt", max_length=max_length, truncation=True).input_ids.to(device)
|
26 |
|
27 |
with torch.no_grad():
|
28 |
outputs = model.generate(input_ids, max_length=max_length, num_return_sequences=1, do_sample=True, temperature=0.7)
|
29 |
-
|
30 |
-
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
31 |
|
32 |
# Parse the generated text
|
33 |
parts = generated_text.split("Question: ")
|
34 |
if len(parts) > 1:
|
35 |
-
qa_parts = parts[1].split("
|
36 |
question = qa_parts[0].strip()
|
37 |
-
|
38 |
-
|
39 |
-
options = options_and_answer[0].strip()
|
40 |
-
|
41 |
-
answer_and_explanation = options_and_answer[1].split("Explanation:")
|
42 |
-
correct_answer = answer_and_explanation[0].strip()
|
43 |
-
explanation = answer_and_explanation[1].strip() if len(answer_and_explanation) > 1 else "No explanation provided."
|
44 |
-
|
45 |
-
return f"Question: {question}\n\nOptions: {options}\n\nCorrect Answer: {correct_answer}\n\nExplanation: {explanation}"
|
46 |
else:
|
47 |
return "Unable to generate a proper question and answer. Please try again with a different input."
|
48 |
except Exception as e:
|
@@ -63,8 +55,8 @@ try:
|
|
63 |
slow_qa,
|
64 |
chatbot=gr.Chatbot(height=500),
|
65 |
textbox=gr.Textbox(placeholder="Enter historical text here...", container=False, scale=7),
|
66 |
-
title="History Q&A Generator",
|
67 |
-
description="Enter a piece of historical text, and the model will generate a related question
|
68 |
theme="soft",
|
69 |
examples=[
|
70 |
"The American Revolution was a colonial revolt that took place between 1765 and 1783.",
|
@@ -79,9 +71,8 @@ try:
|
|
79 |
|
80 |
if error_message:
|
81 |
print("Launching interface with error message.")
|
82 |
-
iface.launch(debug=True)
|
83 |
else:
|
84 |
print("Launching interface normally.")
|
85 |
-
|
86 |
except Exception as e:
|
87 |
print(f"An error occurred while creating or launching the interface: {str(e)}\n{traceback.format_exc()}")
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
import time
|
5 |
import sys
|
6 |
import traceback
|
|
|
9 |
error_message = ""
|
10 |
|
11 |
# Load the model and tokenizer from Hugging Face
|
12 |
+
model_name = "ambrosfitz/history-qa-flan-t5-large"
|
13 |
try:
|
14 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
model.to(device)
|
18 |
except Exception as e:
|
19 |
error_message = f"Error loading model or tokenizer: {str(e)}\n{traceback.format_exc()}"
|
20 |
+
print(error_message)
|
21 |
|
22 |
def generate_qa(text, max_length=512):
|
23 |
try:
|
24 |
+
input_text = f"Generate a history question and answer based on this text: {text}"
|
25 |
input_ids = tokenizer(input_text, return_tensors="pt", max_length=max_length, truncation=True).input_ids.to(device)
|
26 |
|
27 |
with torch.no_grad():
|
28 |
outputs = model.generate(input_ids, max_length=max_length, num_return_sequences=1, do_sample=True, temperature=0.7)
|
29 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
30 |
|
31 |
# Parse the generated text
|
32 |
parts = generated_text.split("Question: ")
|
33 |
if len(parts) > 1:
|
34 |
+
qa_parts = parts[1].split("Answer: ")
|
35 |
question = qa_parts[0].strip()
|
36 |
+
answer = qa_parts[1].strip() if len(qa_parts) > 1 else "No answer provided."
|
37 |
+
return f"Question: {question}\n\nAnswer: {answer}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
else:
|
39 |
return "Unable to generate a proper question and answer. Please try again with a different input."
|
40 |
except Exception as e:
|
|
|
55 |
slow_qa,
|
56 |
chatbot=gr.Chatbot(height=500),
|
57 |
textbox=gr.Textbox(placeholder="Enter historical text here...", container=False, scale=7),
|
58 |
+
title="History Q&A Generator (FLAN-T5)",
|
59 |
+
description="Enter a piece of historical text, and the model will generate a related question and answer.",
|
60 |
theme="soft",
|
61 |
examples=[
|
62 |
"The American Revolution was a colonial revolt that took place between 1765 and 1783.",
|
|
|
71 |
|
72 |
if error_message:
|
73 |
print("Launching interface with error message.")
|
|
|
74 |
else:
|
75 |
print("Launching interface normally.")
|
76 |
+
iface.launch(debug=True)
|
77 |
except Exception as e:
|
78 |
print(f"An error occurred while creating or launching the interface: {str(e)}\n{traceback.format_exc()}")
|