Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoModelForSeq2SeqLM, T5Tokenizer | |
import time | |
# Load the model and tokenizer from Hugging Face | |
model_name = "ambrosfitz/history-qa-t5-base" | |
try: | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
tokenizer = T5Tokenizer.from_pretrained(model_name, use_fast=False) | |
except Exception as e: | |
print(f"Error loading model or tokenizer: {e}") | |
raise | |
# Set device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
def generate_qa(text, max_length=512): | |
input_text = f"Generate question: {text}" | |
input_ids = tokenizer(input_text, return_tensors="pt", max_length=max_length, truncation=True).input_ids.to(device) | |
with torch.no_grad(): | |
outputs = model.generate(input_ids, max_length=max_length, num_return_sequences=1, do_sample=True, temperature=0.7) | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Parse the generated text | |
parts = generated_text.split("Question: ") | |
if len(parts) > 1: | |
qa_parts = parts[1].split("Options:") | |
question = qa_parts[0].strip() | |
options_and_answer = qa_parts[1].split("Correct Answer:") | |
options = options_and_answer[0].strip() | |
answer_and_explanation = options_and_answer[1].split("Explanation:") | |
correct_answer = answer_and_explanation[0].strip() | |
explanation = answer_and_explanation[1].strip() if len(answer_and_explanation) > 1 else "No explanation provided." | |
return f"Question: {question}\n\nOptions: {options}\n\nCorrect Answer: {correct_answer}\n\nExplanation: {explanation}" | |
else: | |
return "Unable to generate a proper question and answer. Please try again with a different input." | |
def slow_qa(message, history): | |
full_response = generate_qa(message) | |
for i in range(len(full_response)): | |
time.sleep(0.01) # Adjust this value to control the speed of the response | |
yield full_response[:i+1] | |
# Create and launch the Gradio interface | |
gr.ChatInterface( | |
slow_qa, | |
chatbot=gr.Chatbot(height=500), | |
textbox=gr.Textbox(placeholder="Enter historical text here...", container=False, scale=7), | |
title="History Q&A Generator", | |
description="Enter a piece of historical text, and the model will generate a related question, answer options, correct answer, and explanation.", | |
theme="soft", | |
examples=[ | |
"The American Revolution was a colonial revolt that took place between 1765 and 1783.", | |
"World War II was a global conflict that lasted from 1939 to 1945, involving many of the world's nations.", | |
"The Renaissance was a period of cultural, artistic, political, and economic revival following the Middle Ages." | |
], | |
cache_examples=False, | |
retry_btn="Regenerate", | |
undo_btn="Remove last", | |
clear_btn="Clear", | |
).launch() |