Spaces:
Running
Running
import torch | |
from torch import nn | |
import math | |
from pytorch_transformers.modeling_bert import( | |
BertEncoder, | |
BertPreTrainedModel, | |
BertConfig | |
) | |
class GeLU(nn.Module): | |
"""Implementation of the gelu activation function. | |
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): | |
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |
Also see https://arxiv.org/abs/1606.08415 | |
""" | |
def __init__(self): | |
super().__init__() | |
def forward(self, x): | |
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) | |
class BertLayerNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-12): | |
"""Construct a layernorm module in the TF style (epsilon inside the square root). | |
""" | |
super(BertLayerNorm, self).__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.bias = nn.Parameter(torch.zeros(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, x): | |
u = x.mean(-1, keepdim=True) | |
s = (x - u).pow(2).mean(-1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.variance_epsilon) | |
return self.weight * x + self.bias | |
class mlp_meta(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(config.hid_dim, config.hid_dim), | |
GeLU(), | |
BertLayerNorm(config.hid_dim, eps=1e-12), | |
nn.Dropout(config.dropout), | |
) | |
def forward(self, x): | |
return self.mlp(x) | |
class Bert_Transformer_Layer(BertPreTrainedModel): | |
def __init__(self,fusion_config): | |
super().__init__(BertConfig(**fusion_config)) | |
bertconfig_fusion = BertConfig(**fusion_config) | |
self.encoder = BertEncoder(bertconfig_fusion) | |
self.init_weights() | |
def forward(self,input, mask=None): | |
""" | |
input:(bs, 4, dim) | |
""" | |
batch, feats, dim = input.size() | |
if mask is not None: | |
mask_ = torch.ones(size=(batch,feats), device=mask.device) | |
mask_[:,1:] = mask | |
mask_ = torch.bmm(mask_.view(batch,1,-1).transpose(1,2), mask_.view(batch,1,-1)) | |
mask_ = mask_.unsqueeze(1) | |
else: | |
mask = torch.Tensor([1.0]).to(input.device) | |
mask_ = mask.repeat(batch,1,feats, feats) | |
extend_mask = (1- mask_) * -10000 | |
assert not extend_mask.requires_grad | |
head_mask = [None] * self.config.num_hidden_layers | |
enc_output = self.encoder( | |
input,extend_mask,head_mask=head_mask | |
) | |
output = enc_output[0] | |
all_attention = enc_output[1] | |
return output,all_attention | |
class mmdPreModel(nn.Module): | |
def __init__(self, config, num_mlp=0, transformer_flag=False, num_hidden_layers=1, mlp_flag=True): | |
super(mmdPreModel, self).__init__() | |
self.num_mlp = num_mlp | |
self.transformer_flag = transformer_flag | |
self.mlp_flag = mlp_flag | |
token_num = config.token_num | |
self.mlp = nn.Sequential( | |
nn.Linear(config.in_dim, config.hid_dim), | |
GeLU(), | |
BertLayerNorm(config.hid_dim, eps=1e-12), | |
nn.Dropout(config.dropout), | |
# nn.Linear(config.hid_dim, config.out_dim), | |
) | |
self.fusion_config = { | |
'hidden_size': config.in_dim, | |
'num_hidden_layers':num_hidden_layers, | |
'num_attention_heads':4, | |
'output_attentions':True | |
} | |
if self.num_mlp>0: | |
self.mlp2 = nn.ModuleList([mlp_meta(config) for _ in range(self.num_mlp)]) | |
if self.transformer_flag: | |
self.transformer = Bert_Transformer_Layer(self.fusion_config) | |
self.feature = nn.Linear(config.hid_dim * token_num, config.out_dim) | |
def forward(self, features): | |
""" | |
input: [batch, token_num, hidden_size], output: [batch, token_num * config.out_dim] | |
""" | |
if self.transformer_flag: | |
features,_ = self.transformer(features) | |
if self.mlp_flag: | |
features = self.mlp(features) | |
if self.num_mlp>0: | |
# features = self.mlp2(features) | |
for _ in range(1): | |
for mlp in self.mlp2: | |
features = mlp(features) | |
features = self.feature(features.view(features.shape[0], -1)) | |
return features #features.view(features.shape[0], -1) | |