File size: 12,926 Bytes
e2ebf5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import numpy as np
import torch
import torch.nn as nn
from pytorch3d.transforms import quaternion_to_matrix, matrix_to_quaternion
from sugar.sugar_scene.sugar_model import SuGaR
from sugar.sugar_scene.sugar_optimizer import SuGaROptimizer
from sugar.sugar_utils.general_utils import inverse_sigmoid


class SuGaRDensifier():
    """Wrapper of the densification functions used for Gaussian Splatting and SuGaR optimization.
    Largely inspired by the original implementation of the 3D Gaussian Splatting paper:
    https://github.com/graphdeco-inria/gaussian-splatting
    """
    def __init__(
        self,
        sugar_model:SuGaR,
        sugar_optimizer:SuGaROptimizer,
        max_grad=0.0002,
        min_opacity:float=0.005,
        max_screen_size:int=20,
        scene_extent:float=None,
        percent_dense:float=0.01,
        ) -> None:
        pass
        
        self.model = sugar_model
        self.optimizer = sugar_optimizer.optimizer
                
        self.points_gradient_accum = torch.zeros((self.model.points.shape[0], 1), device=self.model.device)
        self.denom = torch.zeros((self.model.points.shape[0], 1), device=self.model.device)
        self.max_radii2D = torch.zeros((self.model.points.shape[0]), device=self.model.device)
        
        self.max_grad = max_grad
        self.min_opacity = min_opacity
        self.max_screen_size = max_screen_size
        if scene_extent is None:
            self.scene_extent = sugar_model.get_cameras_spatial_extent()
        else:
            self.scene_extent = scene_extent
        self.percent_dense = percent_dense
        
        self.params_to_densify = []        
        if not self.model.freeze_gaussians:
            self.params_to_densify.extend(["points", "all_densities", "scales", "quaternions"])
            self.params_to_densify.extend(["sh_coordinates_dc", "sh_coordinates_rest"])
        
    def _prune_optimizer(self, mask):
        optimizable_tensors = {}
        for group in self.optimizer.param_groups:
            name = group["name"]
            if name in self.params_to_densify:
                stored_state = self.optimizer.state.get(group['params'][0], None)
                if stored_state is not None:
                    stored_state["exp_avg"] = stored_state["exp_avg"][mask]
                    stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][mask]

                    del self.optimizer.state[group['params'][0]]
                    group["params"][0] = nn.Parameter((group["params"][0][mask].requires_grad_(True)))
                    self.optimizer.state[group['params'][0]] = stored_state

                    optimizable_tensors[group["name"]] = group["params"][0]
                else:
                    group["params"][0] = nn.Parameter(group["params"][0][mask].requires_grad_(True))
                    optimizable_tensors[group["name"]] = group["params"][0]
        return optimizable_tensors
            
    def prune_points(self, mask):
        valid_points_mask = ~mask
        optimizable_tensors = self._prune_optimizer(valid_points_mask)
        
        if "points" in self.params_to_densify:
            self.model._points = optimizable_tensors["points"]
        if "all_densities" in self.params_to_densify:
            self.model.all_densities = optimizable_tensors["all_densities"]
        if "scales" in self.params_to_densify:
            self.model._scales = optimizable_tensors["scales"]
        if "quaternions" in self.params_to_densify:
            self.model._quaternions = optimizable_tensors["quaternions"]
        if "sh_coordinates_dc" in self.params_to_densify:
            self.model._sh_coordinates_dc = optimizable_tensors["sh_coordinates_dc"]
        if "sh_coordinates_rest" in self.params_to_densify:
            self.model._sh_coordinates_rest = optimizable_tensors["sh_coordinates_rest"]
            
        self.points_gradient_accum = self.points_gradient_accum[valid_points_mask]
        self.denom = self.denom[valid_points_mask]
        self.max_radii2D = self.max_radii2D[valid_points_mask]
    
    def cat_tensors_to_optimizer(self, tensors_dict):
        optimizable_tensors = {}
        for group in self.optimizer.param_groups:
            name = group["name"]
            if name in self.params_to_densify:
                assert len(group["params"]) == 1
                            
                extension_tensor = tensors_dict[group["name"]]
                stored_state = self.optimizer.state.get(group['params'][0], None)
                dim_to_cat = 0
                        
                if stored_state is not None:
                    stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(extension_tensor)), dim=dim_to_cat)
                    stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(extension_tensor)), dim=dim_to_cat)

                    del self.optimizer.state[group['params'][0]]
                    group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=dim_to_cat).requires_grad_(True))
                    self.optimizer.state[group['params'][0]] = stored_state

                    optimizable_tensors[group["name"]] = group["params"][0]
                else:
                    group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=dim_to_cat).requires_grad_(True))
                    optimizable_tensors[group["name"]] = group["params"][0]

        return optimizable_tensors
    
    def replace_tensor_to_optimizer(self, tensor, name):
        optimizable_tensors = {}
        for group in self.optimizer.param_groups:
            if group["name"] == name:
                stored_state = self.optimizer.state.get(group['params'][0], None)
                stored_state["exp_avg"] = torch.zeros_like(tensor)
                stored_state["exp_avg_sq"] = torch.zeros_like(tensor)

                del self.optimizer.state[group['params'][0]]
                group["params"][0] = nn.Parameter(tensor.requires_grad_(True))
                self.optimizer.state[group['params'][0]] = stored_state

                optimizable_tensors[group["name"]] = group["params"][0]
        return optimizable_tensors
    
    def densification_postfix(self, new_points, 
                              new_densities, new_scales, new_quaternions,
                              new_sh_coordinates_dc=None, new_sh_coordinates_rest=None, 
                              ):
        tensors_dict = {
            "points": new_points,
            "all_densities": new_densities,
            "scales": new_scales,
            "quaternions": new_quaternions
            }
        tensors_dict["sh_coordinates_dc"] = new_sh_coordinates_dc
        tensors_dict["sh_coordinates_rest"] = new_sh_coordinates_rest

        optimizable_tensors = self.cat_tensors_to_optimizer(tensors_dict)
        
        self.model._points = optimizable_tensors["points"]
        self.model.all_densities = optimizable_tensors["all_densities"]
        self.model._scales = optimizable_tensors["scales"]
        self.model._quaternions = optimizable_tensors["quaternions"]
        self.model._sh_coordinates_dc = optimizable_tensors["sh_coordinates_dc"]
        self.model._sh_coordinates_rest = optimizable_tensors["sh_coordinates_rest"]

        self.points_gradient_accum = torch.zeros((self.model.points.shape[0], 1), device=self.model.device)
        self.denom = torch.zeros((self.model.points.shape[0], 1), device=self.model.device)
        self.max_radii2D = torch.zeros((self.model.points.shape[0]), device=self.model.device)
    
    def update_densification_stats(self, viewspace_point_tensor, radii, visibility_filter):
        # Updates maximum observed 2D radii of all gaussians
        self.max_radii2D[visibility_filter] = torch.max(self.max_radii2D[visibility_filter], radii[visibility_filter])
        
        # Accumulate gradient magnitudes of all points
        self.points_gradient_accum[visibility_filter] += torch.norm(viewspace_point_tensor.grad[visibility_filter, :2], dim=-1, keepdim=True)
        
        # Counts number of updates for each point
        self.denom[visibility_filter] += 1

    def densify_and_clone(self, grads, max_grad, extent):
        max_grad = self.max_grad if max_grad is None else max_grad
        extent = self.scene_extent if extent is None else extent
        
        # Extract points that satisfy the gradient condition
        selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= max_grad, True, False)
        selected_pts_mask = torch.logical_and(selected_pts_mask,
                                              torch.max(self.model.scaling, dim=1).values <= self.percent_dense * extent)
        
        new_points = self.model._points[selected_pts_mask]
        new_densities = self.model.all_densities[selected_pts_mask]
        new_scales = self.model._scales[selected_pts_mask]
        new_quaternions = self.model._quaternions[selected_pts_mask]
        new_sh_coordinates_dc = self.model._sh_coordinates_dc[selected_pts_mask]
        new_sh_coordinates_rest = self.model._sh_coordinates_rest[selected_pts_mask]
        
        self.densification_postfix(
            new_points=new_points,
            new_densities=new_densities, 
            new_scales=new_scales, 
            new_quaternions=new_quaternions,
            new_sh_coordinates_dc=new_sh_coordinates_dc, 
            new_sh_coordinates_rest=new_sh_coordinates_rest,
        )
    
    def densify_and_split(self, grads, max_grad, extent, N=2):
        max_grad = self.max_grad if max_grad is None else max_grad
        extent = self.scene_extent if extent is None else extent
        
        n_init_points = self.model._points.shape[0]
        # Extract points that satisfy the gradient condition
        padded_grad = torch.zeros((n_init_points), device="cuda")
        padded_grad[:grads.shape[0]] = grads.squeeze()
        selected_pts_mask = torch.where(padded_grad >= max_grad, True, False)
        selected_pts_mask = torch.logical_and(selected_pts_mask,
                                              torch.max(self.model.scaling, dim=1).values > self.percent_dense*extent)

        stds = self.model.scaling[selected_pts_mask].repeat(N,1)
        means = torch.zeros((stds.size(0), 3),device="cuda")
        
        samples = torch.normal(mean=means, std=stds)
        rots = quaternion_to_matrix(self.model.quaternions[selected_pts_mask]).repeat(N, 1, 1)
        
        new_points = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.model.points[selected_pts_mask].repeat(N, 1)
        new_scales = self.model.scale_inverse_activation(self.model.scaling[selected_pts_mask].repeat(N,1) / (0.8*N))
        new_quaternions = self.model._quaternions[selected_pts_mask].repeat(N,1)
        new_densities = self.model.all_densities[selected_pts_mask].repeat(N,1)
        new_sh_coordinates_dc = self.model._sh_coordinates_dc[selected_pts_mask].repeat(N,1,1)
        new_sh_coordinates_rest = self.model._sh_coordinates_rest[selected_pts_mask].repeat(N,1,1)
        
        self.densification_postfix(
            new_points=new_points,
            new_densities=new_densities, 
            new_scales=new_scales, 
            new_quaternions=new_quaternions,
            new_sh_coordinates_dc=new_sh_coordinates_dc, 
            new_sh_coordinates_rest=new_sh_coordinates_rest,
        )

        prune_filter = torch.cat((selected_pts_mask, torch.zeros(N * selected_pts_mask.sum(), device=self.model.device, dtype=bool)))
        self.prune_points(prune_filter)
    
    def densify_and_prune(self, max_grad:float=None, min_opacity:float=None, extent:float=None, max_screen_size:int=None):
        max_grad = self.max_grad if max_grad is None else max_grad
        min_opacity = self.min_opacity if min_opacity is None else min_opacity
        extent = self.scene_extent if extent is None else extent
        
        grads = self.points_gradient_accum / self.denom
        grads[grads.isnan()] = 0.0

        self.densify_and_clone(grads, max_grad, extent)
        self.densify_and_split(grads, max_grad, extent)

        prune_mask = (self.model.strengths < min_opacity).squeeze()
        if max_screen_size:
            big_points_vs = self.max_radii2D > max_screen_size
            big_points_ws = self.model.scaling.max(dim=1).values > 0.1 * extent
            prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws)
        self.prune_points(prune_mask)

        torch.cuda.empty_cache()
    
    def reset_opacity(self):
        opacities_new = inverse_sigmoid(torch.min(self.model.strengths, torch.ones_like(self.model.all_densities.view(-1, 1))*0.01))
        optimizable_tensors = self.replace_tensor_to_optimizer(opacities_new, "all_densities")
        self.all_densities = optimizable_tensors["all_densities"]