File size: 8,719 Bytes
1f43fd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from enum import Enum
import subprocess
import sys
import shutil
import torch
import torch.distributed as dist
from torchvision.transforms import functional as F
from torchvision import transforms as T
from transformers import AutoFeatureExtractor
from PIL import Image, ImageDraw, ImageFont, ImageOps
import requests
from io import BytesIO

import random


def dump_git_status(out_file=sys.stdout, exclude_file_patterns=['*.ipynb', '*.th', '*.sh', '*.txt', '*.json']):
  """Logs git status to stdout."""
  subprocess.call('git rev-parse HEAD', shell=True, stdout=out_file)
  subprocess.call('echo', shell=True, stdout=out_file)
  exclude_string = ''
  subprocess.call('git --no-pager diff -- . {}'.format(exclude_string), shell=True, stdout=out_file)


def get_image_from_url(url: str):
    response = requests.get(url)
    img = Image.open(BytesIO(response.content))
    img = img.resize((224, 224))
    img = img.convert('RGB')
    return img


def truncate_caption(caption: str) -> str:
  """Truncate captions at periods and newlines."""
  trunc_index = caption.find('\n') + 1
  if trunc_index <= 0:
      trunc_index = caption.find('.') + 1
  caption = caption[:trunc_index]
  return caption


def pad_to_size(x, size=256):
  delta_w = size - x.size[0]
  delta_h = size - x.size[1]
  padding = (
    delta_w // 2,
    delta_h // 2,
    delta_w - (delta_w // 2),
    delta_h - (delta_h // 2),
  )
  new_im = ImageOps.expand(x, padding)
  return new_im


class RandCropResize(object):

  """
  Randomly crops, then randomly resizes, then randomly crops again, an image. Mirroring the augmentations from https://arxiv.org/abs/2102.12092
  """

  def __init__(self, target_size):
    self.target_size = target_size

  def __call__(self, img):
    img = pad_to_size(img, self.target_size)
    d_min = min(img.size)
    img = T.RandomCrop(size=d_min)(img)
    t_min = min(d_min, round(9 / 8 * self.target_size))
    t_max = min(d_min, round(12 / 8 * self.target_size))
    t = random.randint(t_min, t_max + 1)
    img = T.Resize(t)(img)
    if min(img.size) < 256:
      img = T.Resize(256)(img)
    return T.RandomCrop(size=self.target_size)(img)


class SquarePad(object):
  """Pads image to square.
  From https://discuss.pytorch.org/t/how-to-resize-and-pad-in-a-torchvision-transforms-compose/71850/9
  """
  def __call__(self, image):
    max_wh = max(image.size)
    p_left, p_top = [(max_wh - s) // 2 for s in image.size]
    p_right, p_bottom = [max_wh - (s+pad) for s, pad in zip(image.size, [p_left, p_top])]
    padding = (p_left, p_top, p_right, p_bottom)
    return F.pad(image, padding, 0, 'constant')


def create_image_of_text(text: str, width: int = 224, nrows: int = 2, color=(255, 255, 255), font=None) -> torch.Tensor:
  """Creates a (3, nrows * 14, width) image of text.

  Returns:
    cap_img: (3, 14 * nrows, width) image of wrapped text.
  """
  height = 12
  padding = 5
  effective_width = width - 2 * padding
  # Create a black image to draw text on.
  cap_img = Image.new('RGB', (effective_width * nrows, height), color = (0, 0, 0))
  draw = ImageDraw.Draw(cap_img)
  draw.text((0, 0), text, color, font=font or ImageFont.load_default())
  cap_img = F.convert_image_dtype(F.pil_to_tensor(cap_img), torch.float32)  # (3, height, W * nrows)
  cap_img = torch.split(cap_img, effective_width, dim=-1)  # List of nrow elements of shape (3, height, W)
  cap_img = torch.cat(cap_img, dim=1)  # (3, height * nrows, W)
  # Add zero padding.
  cap_img = torch.nn.functional.pad(cap_img, [padding, padding, 0, padding])
  return cap_img


def get_feature_extractor_for_model(model_name: str, image_size: int = 224, train: bool = True):
  print(f'Using HuggingFace AutoFeatureExtractor for {model_name}.')
  feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
  return feature_extractor


def get_pixel_values_for_model(feature_extractor, img):
  pixel_values = feature_extractor(
    img.convert('RGB'),
    return_tensors="pt").pixel_values[0, ...]  # (3, H, W)
  return pixel_values


def save_checkpoint(state, is_best, filename='checkpoint'):
  torch.save(state, filename + '.pth.tar')
  if is_best:
    shutil.copyfile(filename + '.pth.tar', filename + '_best.pth.tar')


def accuracy(output, target, padding, topk=(1,)):
  """Computes the accuracy over the k top predictions for the specified values of k"""
  with torch.no_grad():
    maxk = max(topk)
    if output.shape[-1] < maxk:
      print(f"[WARNING] Less than {maxk} predictions available. Using {output.shape[-1]} for topk.")

    maxk = min(maxk, output.shape[-1])
    batch_size = target.size(0)

    # Take topk along the last dimension.
    _, pred = output.topk(maxk, -1, True, True)  # (N, T, topk)

    mask = (target != padding).type(target.dtype)
    target_expand = target[..., None].expand_as(pred)
    correct = pred.eq(target_expand)
    correct = correct * mask[..., None].expand_as(correct)

    res = []
    for k in topk:
      correct_k = correct[..., :k].reshape(-1).float().sum(0, keepdim=True)
      res.append(correct_k.mul_(100.0 / mask.sum()))
    return res


def get_params_count(model, max_name_len: int = 60):
  params = [(name[:max_name_len], p.numel(), str(tuple(p.shape)), p.requires_grad) for name, p in model.named_parameters()]
  total_trainable_params = sum([x[1] for x in params if x[-1]])
  total_nontrainable_params = sum([x[1] for x in params if not x[-1]])
  return params, total_trainable_params, total_nontrainable_params


def get_params_count_str(model, max_name_len: int = 60):
  padding = 70  # Hardcoded depending on desired amount of padding and separators.
  params, total_trainable_params, total_nontrainable_params = get_params_count(model, max_name_len)
  param_counts_text = ''
  param_counts_text += '=' * (max_name_len + padding) + '\n'
  param_counts_text += f'| {"Module":<{max_name_len}} | {"Trainable":<10} | {"Shape":>15} | {"Param Count":>12} |\n'
  param_counts_text += '-' * (max_name_len + padding) + '\n'
  for name, param_count, shape, trainable in params:
    param_counts_text += f'| {name:<{max_name_len}} | {"True" if trainable else "False":<10} | {shape:>15} | {param_count:>12,} |\n'
  param_counts_text += '-' * (max_name_len + padding) + '\n'
  param_counts_text += f'| {"Total trainable params":<{max_name_len}} | {"":<10} | {"":<15} | {total_trainable_params:>12,} |\n'
  param_counts_text += f'| {"Total non-trainable params":<{max_name_len}} | {"":<10} | {"":<15} | {total_nontrainable_params:>12,} |\n'
  param_counts_text += '=' * (max_name_len + padding) + '\n'
  return param_counts_text


class Summary(Enum):
  NONE = 0
  AVERAGE = 1
  SUM = 2
  COUNT = 3


class ProgressMeter(object):
  def __init__(self, num_batches, meters, prefix=""):
    self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
    self.meters = meters
    self.prefix = prefix

  def display(self, batch):
    entries = [self.prefix + self.batch_fmtstr.format(batch)]
    entries += [str(meter) for meter in self.meters]
    print('\t'.join(entries))
    
  def display_summary(self):
    entries = [" *"]
    entries += [meter.summary() for meter in self.meters]
    print(' '.join(entries))

  def _get_batch_fmtstr(self, num_batches):
    num_digits = len(str(num_batches // 1))
    fmt = '{:' + str(num_digits) + 'd}'
    return '[' + fmt + '/' + fmt.format(num_batches) + ']'


class AverageMeter(object):
  """Computes and stores the average and current value"""
  def __init__(self, name, fmt=':f', summary_type=Summary.AVERAGE):
    self.name = name
    self.fmt = fmt
    self.summary_type = summary_type
    self.reset()

  def reset(self):
    self.val = 0
    self.avg = 0
    self.sum = 0
    self.count = 0

  def update(self, val, n=1):
    self.val = val
    self.sum += val * n
    self.count += n
    self.avg = self.sum / self.count

  def all_reduce(self):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    total = torch.tensor([self.sum, self.count], dtype=torch.float32, device=device)
    dist.all_reduce(total, dist.ReduceOp.SUM, async_op=False)
    self.sum, self.count = total.tolist()
    self.avg = self.sum / self.count

  def __str__(self):
    fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
    return fmtstr.format(**self.__dict__)
  
  def summary(self):
    fmtstr = ''
    if self.summary_type is Summary.NONE:
      fmtstr = ''
    elif self.summary_type is Summary.AVERAGE:
      fmtstr = '{name} {avg:.3f}'
    elif self.summary_type is Summary.SUM:
      fmtstr = '{name} {sum:.3f}'
    elif self.summary_type is Summary.COUNT:
      fmtstr = '{name} {count:.3f}'
    else:
      raise ValueError('invalid summary type %r' % self.summary_type)
    
    return fmtstr.format(**self.__dict__)