File size: 14,906 Bytes
1f43fd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import collections
import json
import os
from PIL import Image
import numpy as np
import time
import tqdm
import torch
import torch.distributed as dist
from torch.utils.tensorboard import SummaryWriter
from torchmetrics import BLEUScore
import torchvision
from fromage import losses as losses_utils
from fromage import utils
def validate(val_loader, model, tokenizer, criterion, epoch, args):
ngpus_per_node = torch.cuda.device_count()
writer = SummaryWriter(args.log_dir)
bleu_scorers = [BLEUScore(n_gram=i) for i in [1, 2, 3, 4]]
actual_step = (epoch + 1) * args.steps_per_epoch
model_modes = ['captioning', 'retrieval']
num_words = 32 # Number of tokens to generate.
feature_extractor = utils.get_feature_extractor_for_model(args.visual_model, image_size=args.image_size, train=False)
def get_pixel_values_from_path(path: str):
img = Image.open(path)
img = img.resize((args.image_size, args.image_size))
pixel_values = utils.get_pixel_values_for_model(feature_extractor, img)[None, ...]
if args.precision == 'fp16':
pixel_values = pixel_values.half()
elif args.precision == 'bf16':
pixel_values = pixel_values.bfloat16()
if torch.cuda.is_available():
pixel_values = pixel_values.cuda()
return pixel_values
def run_validate(loader, base_progress=0):
with torch.no_grad():
end = time.time()
all_generated_captions = []
all_gt_captions = []
all_generated_image_paths = []
all_image_features = []
all_text_features = []
for i, (image_paths, images, caption_images, tgt_tokens, token_len) in tqdm.tqdm(enumerate(loader), position=0, total=len(loader)):
i = base_progress + i
if torch.cuda.is_available():
tgt_tokens = tgt_tokens.cuda(args.gpu, non_blocking=True)
token_len = token_len.cuda(args.gpu, non_blocking=True)
images = images.cuda()
if args.precision == 'fp16':
images = images.half()
elif args.precision == 'bf16':
images = images.bfloat16()
for model_mode in model_modes:
(model_output, full_labels, last_embedding, _, visual_embs) = model(
images, tgt_tokens, token_len, mode=model_mode, input_prefix=args.input_prompt, inference=True) # (N, T, C)
if model_mode == 'captioning':
loss = args.cap_loss_scale * model_output.loss
elif model_mode == 'retrieval':
loss = args.ret_loss_scale * model_output.loss
else:
raise NotImplementedError
output = model_output.logits
if model_mode == 'captioning':
acc1, acc5 = utils.accuracy(output[:, :-1, :], full_labels[:, 1:], -100, topk=(1, 5))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
ce_losses.update(loss.item(), images.size(0))
if model_mode == 'captioning':
losses.update(loss.item(), images.size(0))
elif model_mode == 'retrieval':
if args.distributed:
original_last_embedding = torch.clone(last_embedding)
all_visual_embs = [torch.zeros_like(visual_embs) for _ in range(dist.get_world_size())]
all_last_embedding = [torch.zeros_like(last_embedding) for _ in range(dist.get_world_size())]
dist.all_gather(all_visual_embs, visual_embs)
dist.all_gather(all_last_embedding, last_embedding)
# Overwrite with embeddings produced on this replica, which track the gradients.
all_visual_embs[dist.get_rank()] = visual_embs
all_last_embedding[dist.get_rank()] = last_embedding
visual_embs = torch.cat(all_visual_embs)
last_embedding = torch.cat(all_last_embedding)
start_idx = args.rank * images.shape[0]
end_idx = start_idx + images.shape[0]
assert torch.all(last_embedding[start_idx:end_idx] == original_last_embedding), args.rank
all_text_features.append(last_embedding.cpu())
all_image_features.append(visual_embs.cpu())
# Run auto-regressive generation sample
if model_mode == 'captioning':
input_embs = model.module.model.get_visual_embs(images, mode='captioning') # (2, n_visual_tokens, D)
if args.input_prompt is not None:
print(f'Adding prefix "{args.input_prompt}" to captioning generate=True.')
prompt_ids = tokenizer(args.input_prompt, add_special_tokens=False, return_tensors="pt").input_ids
prompt_ids = prompt_ids.to(visual_embs.device)
prompt_embs = model.module.model.input_embeddings(prompt_ids)
prompt_embs = prompt_embs.repeat(input_embs.shape[0], 1, 1)
input_embs = torch.cat([input_embs, prompt_embs], dim=1)
generated_ids, _, _ = model(input_embs, tgt_tokens, token_len,
generate=True, num_words=num_words, temperature=0.0, top_p=1.0,
min_word_tokens=num_words)
if args.distributed and ngpus_per_node > 1:
all_generated_ids = [torch.zeros_like(generated_ids) for _ in range(dist.get_world_size())]
dist.all_gather(all_generated_ids, generated_ids)
all_generated_ids[dist.get_rank()] = generated_ids
generated_ids = torch.cat(all_generated_ids)
all_tgt_tokens = [torch.zeros_like(tgt_tokens) for _ in range(dist.get_world_size())]
dist.all_gather(all_tgt_tokens, tgt_tokens)
all_tgt_tokens[dist.get_rank()] = tgt_tokens
all_tgt_tokens = torch.cat(all_tgt_tokens)
all_image_paths = [[None for _ in image_paths] for _ in range(dist.get_world_size())]
dist.all_gather_object(all_image_paths, image_paths)
all_image_paths[dist.get_rank()] = image_paths
image_paths = []
for p in all_image_paths:
image_paths.extend(p)
else:
all_tgt_tokens = tgt_tokens
all_tgt_tokens[all_tgt_tokens == -100] = tokenizer.pad_token_id
generated_captions = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
gt_captions = tokenizer.batch_decode(all_tgt_tokens, skip_special_tokens=True)
for cap_i in range(len(generated_captions)):
image_path = image_paths[cap_i]
all_generated_image_paths.append(image_path)
stop_idx = generated_captions[cap_i].find('.')
if stop_idx > 5:
all_generated_captions.append(generated_captions[cap_i][:stop_idx])
else:
all_generated_captions.append(generated_captions[cap_i])
all_gt_captions.append([gt_captions[cap_i]])
elif model_mode == 'retrieval':
if i == 0:
# Generate without image input to visualize text-generation ability.
input_ids = tgt_tokens[:, :3] # Use first 3 tokens as initial prompt for generation.
input_embs = model.module.model.input_embeddings(input_ids) # (N, T, D)
generated_ids, _, _ = model(input_embs, tgt_tokens, token_len, generate=True, num_words=num_words, temperature=0.0, top_p=1.0)
generated_ids = torch.cat([input_ids, generated_ids], dim=1)
generated_captions = tokenizer.batch_decode(generated_ids, skip_special_tokens=False)
gt_captions = tokenizer.batch_decode(tgt_tokens, skip_special_tokens=False)
else:
raise NotImplementedError
if i == 0:
max_to_display = 5
print('=' * 30)
print('Generated samples:')
for cap_i, cap in enumerate(generated_captions[:max_to_display]):
print(f'{cap_i}) {cap}')
print('=' * 30)
print('Real samples:')
for cap_i, cap in enumerate(gt_captions[:max_to_display]):
print(f'{cap_i}) {cap}')
print('=' * 30)
# Write images and captions to Tensorboard.
if not args.distributed or (args.rank % ngpus_per_node == 0):
max_images_to_show = 16
normalized_images = images - images.min()
normalized_images /= normalized_images.max() # (N, 3, H, W)
# Create generated caption text.
generated_cap_images = torch.stack([
utils.create_image_of_text(
generated_captions[j].encode('ascii', 'ignore'),
width=normalized_images.shape[3],
color=(255, 255, 0))
for j in range(normalized_images.shape[0])], axis=0)
# Append gt/generated caption images.
display_images = torch.cat([normalized_images.float().cpu(), caption_images, generated_cap_images], axis=2)[:max_images_to_show]
grid = torchvision.utils.make_grid(display_images, nrow=int(max_images_to_show ** 0.5), padding=4)
writer.add_image(f'val/images_{model_mode}', grid, actual_step)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i + 1)
if i == args.val_steps_per_epoch - 1:
break
# Measure captioning metrics.
path2captions = collections.defaultdict(list)
for image_path, caption in zip(all_generated_image_paths, all_gt_captions):
assert len(caption) == 1, caption
path2captions[image_path].append(caption[0].replace('[RET]', ''))
full_gt_captions = [path2captions[path] for path in all_generated_image_paths]
print(f'Computing BLEU with {len(all_generated_captions)} generated captions:'
f'{all_generated_captions[:5]} and {len(full_gt_captions)} groundtruth captions:',
f'{full_gt_captions[:5]}.')
bleu1_score = bleu_scorers[0](all_generated_captions, full_gt_captions)
bleu1.update(bleu1_score, 1)
bleu2_score = bleu_scorers[1](all_generated_captions, full_gt_captions)
bleu2.update(bleu2_score, 1)
bleu3_score = bleu_scorers[2](all_generated_captions, full_gt_captions)
bleu3.update(bleu3_score, 2)
bleu4_score = bleu_scorers[3](all_generated_captions, full_gt_captions)
bleu4.update(bleu4_score, 3)
# Measure retrieval metrics over the entire validation set.
all_image_features = torch.cat(all_image_features, axis=0) # (coco_val_len, 2048)
all_text_features = torch.cat(all_text_features, axis=0) # (coco_val_len, 2048)
print(f"Computing similarity between {all_image_features.shape} and {all_text_features.shape}.")
logits_per_image = all_image_features @ all_text_features.t()
logits_per_text = logits_per_image.t()
all_image_acc1, all_image_acc5 = losses_utils.contrastive_acc(logits_per_image, topk=(1, 5))
all_caption_acc1, all_caption_acc5 = losses_utils.contrastive_acc(logits_per_text, topk=(1, 5))
image_loss = losses_utils.contrastive_loss(logits_per_image)
caption_loss = losses_utils.contrastive_loss(logits_per_text)
loss = args.ret_loss_scale * (image_loss + caption_loss) / 2.0
losses.update(loss.item(), logits_per_image.size(0))
top1_caption.update(all_caption_acc1.item(), logits_per_image.size(0))
top5_caption.update(all_caption_acc5.item(), logits_per_image.size(0))
top1_image.update(all_image_acc1.item(), logits_per_image.size(0))
top5_image.update(all_image_acc5.item(), logits_per_image.size(0))
batch_time = utils.AverageMeter('Time', ':6.3f', utils.Summary.AVERAGE)
losses = utils.AverageMeter('Loss', ':.4e', utils.Summary.AVERAGE)
ce_losses = utils.AverageMeter('CeLoss', ':.4e', utils.Summary.AVERAGE)
top1 = utils.AverageMeter('Acc@1', ':6.2f', utils.Summary.AVERAGE)
top5 = utils.AverageMeter('Acc@5', ':6.2f', utils.Summary.AVERAGE)
bleu1 = utils.AverageMeter('BLEU@1', ':6.2f', utils.Summary.AVERAGE)
bleu2 = utils.AverageMeter('BLEU@2', ':6.2f', utils.Summary.AVERAGE)
bleu3 = utils.AverageMeter('BLEU@3', ':6.2f', utils.Summary.AVERAGE)
bleu4 = utils.AverageMeter('BLEU@4', ':6.2f', utils.Summary.AVERAGE)
top1_caption = utils.AverageMeter('CaptionAcc@1', ':6.2f', utils.Summary.AVERAGE)
top5_caption = utils.AverageMeter('CaptionAcc@5', ':6.2f', utils.Summary.AVERAGE)
top1_image = utils.AverageMeter('ImageAcc@1', ':6.2f', utils.Summary.AVERAGE)
top5_image = utils.AverageMeter('ImageAcc@5', ':6.2f', utils.Summary.AVERAGE)
progress = utils.ProgressMeter(
len(val_loader) + (args.distributed and (len(val_loader.sampler) * args.world_size < len(val_loader.dataset))),
[batch_time, losses, top1, top5, bleu4],
prefix='Test: ')
# switch to evaluate mode
model.eval()
run_validate(val_loader)
if args.distributed:
batch_time.all_reduce()
losses.all_reduce()
bleu1.all_reduce()
bleu2.all_reduce()
bleu3.all_reduce()
bleu4.all_reduce()
top1.all_reduce()
top5.all_reduce()
top1_caption.all_reduce()
top5_caption.all_reduce()
top1_image.all_reduce()
top5_image.all_reduce()
if args.distributed and (len(val_loader.sampler) * args.world_size < len(val_loader.dataset)):
aux_val_dataset = Subset(val_loader.dataset,
range(len(val_loader.sampler) * args.world_size, len(val_loader.dataset)))
aux_val_loader = torch.utils.data.DataLoader(
aux_val_dataset, batch_size=(args.val_batch_size or args.batch_size), shuffle=False,
num_workers=args.workers, pin_memory=True, collate_fn=data.collate_fn)
run_validate(aux_val_loader, len(val_loader))
progress.display_summary()
writer.add_scalar('val/total_secs_per_batch', batch_time.avg, actual_step)
writer.add_scalar('val/seq_top1_acc', top1.avg, actual_step)
writer.add_scalar('val/seq_top5_acc', top5.avg, actual_step)
writer.add_scalar('val/ce_loss', losses.avg, actual_step)
writer.add_scalar('val/bleu1', bleu1.avg, actual_step)
writer.add_scalar('val/bleu2', bleu2.avg, actual_step)
writer.add_scalar('val/bleu3', bleu3.avg, actual_step)
writer.add_scalar('val/bleu4', bleu4.avg, actual_step)
writer.add_scalar('val/contrastive_loss', losses.avg, actual_step)
writer.add_scalar('val/t2i_top1_acc', top1_caption.avg, actual_step)
writer.add_scalar('val/t2i_top5_acc', top5_caption.avg, actual_step)
writer.add_scalar('val/i2t_top1_acc', top1_image.avg, actual_step)
writer.add_scalar('val/i2t_top5_acc', top5_image.avg, actual_step)
writer.add_scalar('val/top1_acc', (top1_caption.avg + top1_image.avg) / 2.0, actual_step)
writer.add_scalar('val/top5_acc', (top5_caption.avg + top5_image.avg) / 2.0, actual_step)
writer.close()
# Use top1 accuracy as the metric for keeping the best checkpoint.
return top1_caption.avg
|