Spaces:
Running
Running
File size: 7,329 Bytes
a3ee979 fcf6714 a3ee979 07a2d78 a3ee979 fcf6714 a3ee979 fcf6714 a3ee979 07a2d78 a3ee979 fcf6714 a3ee979 07a2d78 a3ee979 fcf6714 a3ee979 fcf6714 a3ee979 fcf6714 a3ee979 fcf6714 a3ee979 fcf6714 a3ee979 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import json
import tarfile
from pathlib import Path
from typing import Optional
import faiss
import gdown
import numpy as np
import torch
from PIL import Image
from transformers import CLIPModel, CLIPProcessor
from src.retrieval import ArrowMetadataProvider
from src.transforms import TextCompose, default_vocabulary_transforms
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
RETRIEVAL_DATABASES = {
"cc12m": "https://drive.google.com/uc?id=1HyM4mnKSxF0sqzAe-KZL8y-cQWRPiuXn&confirm=t",
}
class CaSED(torch.nn.Module):
"""Torch module for Category Search from External Databases (CaSED).
Args:
index_name (str): Name of the faiss index to use.
vocabulary_transforms (TextCompose): List of transforms to apply to the vocabulary.
Extra hparams:
alpha (float): Weight for the average of the image and text predictions. Defaults to 0.5.
artifact_dir (str): Path to the directory where the databases are stored. Defaults to
"artifacts/".
retrieval_num_results (int): Number of results to return. Defaults to 10.
"""
def __init__(
self,
index_name: str = "ViT-L-14_CC12M",
vocabulary_transforms: TextCompose = default_vocabulary_transforms(),
**kwargs,
):
super().__init__()
# load CLIP
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14").to(DEVICE)
self.index_name = index_name
self.vocabulary_transforms = vocabulary_transforms
self.vision_encoder = model.vision_model
self.vision_proj = model.visual_projection
self.language_encoder = model.text_model
self.language_proj = model.text_projection
self.logit_scale = model.logit_scale.exp()
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
# set hparams
kwargs["alpha"] = kwargs.get("alpha", 0.5)
kwargs["artifact_dir"] = kwargs.get("artifact_dir", "artifacts/")
kwargs["retrieval_num_results"] = kwargs.get("retrieval_num_results", 10)
self.hparams = kwargs
# download databases
self.prepare_data()
# load faiss indices and metadata providers
indices_list_dir = Path(self.hparams["artifact_dir"]) / "models" / "retrieval"
indices_fp = indices_list_dir / "indices.json"
self.indices = json.load(open(indices_fp))
self.resources = {}
for name, index_fp in self.indices.items():
text_index_fp = Path(index_fp) / "text.index"
metadata_fp = Path(index_fp) / "metadata/"
text_index = faiss.read_index(
str(text_index_fp), faiss.IO_FLAG_MMAP | faiss.IO_FLAG_READ_ONLY
)
metadata_provider = ArrowMetadataProvider(metadata_fp)
self.resources[name] = {
"device": DEVICE,
"model": "ViT-L-14",
"text_index": text_index,
"metadata_provider": metadata_provider,
}
def prepare_data(self):
"""Download data if needed."""
databases_path = Path(self.hparams["artifact_dir"]) / "models" / "databases"
for name, url in RETRIEVAL_DATABASES.items():
database_path = Path(databases_path, name)
if database_path.exists():
continue
# download data
target_path = Path(databases_path, name + ".tar.gz")
try:
gdown.download(url, str(target_path), quiet=False)
tar = tarfile.open(target_path, "r:gz")
tar.extractall(target_path.parent)
tar.close()
target_path.unlink()
except FileNotFoundError:
print(f"Could not download {url}.")
print(f"Please download it manually and place it in {target_path.parent}.")
@torch.no_grad()
def query_index(self, sample_z: torch.Tensor) -> torch.Tensor:
# get the index
resources = self.resources[self.index_name]
text_index = resources["text_index"]
metadata_provider = resources["metadata_provider"]
# query the index
sample_z = sample_z.squeeze(0)
sample_z = sample_z / sample_z.norm(dim=-1, keepdim=True)
query_input = sample_z.cpu().detach().numpy().tolist()
query = np.expand_dims(np.array(query_input).astype("float32"), 0)
distances, idxs, _ = text_index.search_and_reconstruct(
query, self.hparams["retrieval_num_results"]
)
results = idxs[0]
nb_results = np.where(results == -1)[0]
nb_results = nb_results[0] if len(nb_results) > 0 else len(results)
indices = results[:nb_results]
distances = distances[0][:nb_results]
if len(distances) == 0:
return []
# get the metadata
results = []
metadata = metadata_provider.get(indices[:20], ["caption"])
for key, (d, i) in enumerate(zip(distances, indices)):
output = {}
meta = None if key + 1 > len(metadata) else metadata[key]
if meta is not None:
output.update(meta)
output["id"] = i.item()
output["similarity"] = d.item()
results.append(output)
# get the captions only
vocabularies = [result["caption"] for result in results]
return vocabularies
@torch.no_grad()
def forward(self, image_fp: str, alpha: Optional[float] = None) -> torch.Tensor():
# forward the image
image = self.processor(images=Image.open(image_fp), return_tensors="pt")
image["pixel_values"] = image["pixel_values"].to(DEVICE)
image_z = self.vision_proj(self.vision_encoder(**image)[1])
# generate a single text embedding from the unfiltered vocabulary
vocabulary = self.query_index(image_z)
text = self.processor(text=vocabulary, return_tensors="pt", padding=True)
text["input_ids"] = text["input_ids"][:, :77].to(DEVICE)
text["attention_mask"] = text["attention_mask"][:, :77].to(DEVICE)
text_z = self.language_encoder(**text)[1]
text_z = self.language_proj(text_z)
# filter the vocabulary, embed it, and get its mean embedding
vocabulary = self.vocabulary_transforms(vocabulary) or ["object"]
text = self.processor(text=vocabulary, return_tensors="pt", padding=True)
text = {k: v.to(DEVICE) for k, v in text.items()}
vocabulary_z = self.language_encoder(**text)[1]
vocabulary_z = self.language_proj(vocabulary_z)
vocabulary_z = vocabulary_z / vocabulary_z.norm(dim=-1, keepdim=True)
# get the image and text predictions
image_z = image_z / image_z.norm(dim=-1, keepdim=True)
text_z = text_z / text_z.norm(dim=-1, keepdim=True)
image_p = (torch.matmul(image_z, vocabulary_z.T) * self.logit_scale).softmax(dim=-1)
text_p = (torch.matmul(text_z, vocabulary_z.T) * self.logit_scale).softmax(dim=-1)
# average the image and text predictions
alpha = alpha or self.hparams["alpha"]
sample_p = alpha * image_p + (1 - alpha) * text_p
# get the scores
scores = sample_p[0].cpu().tolist()
return vocabulary, scores
|