alonsosilva commited on
Commit
691f4df
·
1 Parent(s): fd20ecb
Files changed (4) hide show
  1. Dockerfile +11 -0
  2. LICENSE +21 -0
  3. app.py +28 -0
  4. requirements.txt +4 -0
Dockerfile ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.11
2
+
3
+ WORKDIR /code
4
+
5
+ COPY ./requirements.txt /code/requirements.txt
6
+
7
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
8
+
9
+ COPY . .
10
+
11
+ ENTRYPOINT ["solara", "run", "app.py", "--host=0.0.0.0", "--port=7860"]
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 Alonso Silva Allende
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
app.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import solara
2
+ import torch
3
+ import torch.nn.functional as F
4
+ import pandas as pd
5
+ from transformers import AutoTokenizer, AutoModelForCausalLM
6
+
7
+ tokenizer = AutoTokenizer.from_pretrained('gpt2')
8
+ model = AutoModelForCausalLM.from_pretrained('gpt2')
9
+ text1 = solara.reactive("Alan Turing theorized that computers would one day become")
10
+ @solara.component
11
+ def Page():
12
+ with solara.Card(margin=0):
13
+ solara.Markdown("#Next token prediction visualization")
14
+ def on_action_cell(column, row_index):
15
+ text1.value += tokenizer.decode(top_10.indices[0][row_index])
16
+ cell_actions = [solara.CellAction(icon="mdi-thumb-up", name="Select", on_click=on_action_cell)]
17
+ solara.InputText("Enter text:", value=text1, continuous_update=True)
18
+ if text1.value != "":
19
+ tokens = tokenizer.encode(text1.value, return_tensors="pt")
20
+ outputs = model.generate(tokens, max_new_tokens=1, output_scores=True, return_dict_in_generate=True, pad_token_id=tokenizer.eos_token_id)
21
+ scores = F.softmax(outputs.scores[0], dim=-1)
22
+ top_10 = torch.topk(scores, 10)
23
+ df = pd.DataFrame()
24
+ df["probs"] = top_10.values[0]
25
+ df["probs"] = [f"{value:.2%}" for value in df["probs"].values]
26
+ df["predicted next token"] = [tokenizer.decode(top_10.indices[0][i]) for i in range(10)]
27
+ solara.DataFrame(df, items_per_page=10, cell_actions=cell_actions)
28
+ Page()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ solara
2
+ pandas
3
+ torch
4
+ transformers