|
from model.rotation2xyz import Rotation2xyz |
|
import numpy as np |
|
from trimesh import Trimesh |
|
import os |
|
import torch |
|
from visualize.simplify_loc2rot import joints2smpl |
|
|
|
class npy2obj: |
|
def __init__(self, npy_path, sample_idx, rep_idx, device=0, cuda=True): |
|
self.npy_path = npy_path |
|
self.motions = np.load(self.npy_path, allow_pickle=True) |
|
if self.npy_path.endswith('.npz'): |
|
self.motions = self.motions['arr_0'] |
|
self.motions = self.motions[None][0] |
|
self.rot2xyz = Rotation2xyz(device='cpu') |
|
self.faces = self.rot2xyz.smpl_model.faces |
|
self.bs, self.njoints, self.nfeats, self.nframes = self.motions['motion'].shape |
|
self.opt_cache = {} |
|
self.sample_idx = sample_idx |
|
self.total_num_samples = self.motions['num_samples'] |
|
self.rep_idx = rep_idx |
|
self.absl_idx = self.rep_idx*self.total_num_samples + self.sample_idx |
|
self.num_frames = self.motions['motion'][self.absl_idx].shape[-1] |
|
self.j2s = joints2smpl(num_frames=self.num_frames, device_id=device, cuda=cuda) |
|
|
|
if self.nfeats == 3: |
|
print(f'Running SMPLify For sample [{sample_idx}], repetition [{rep_idx}], it may take a few minutes.') |
|
motion_tensor, opt_dict = self.j2s.joint2smpl(self.motions['motion'][self.absl_idx].transpose(2, 0, 1)) |
|
self.motions['motion'] = motion_tensor.cpu().numpy() |
|
elif self.nfeats == 6: |
|
self.motions['motion'] = self.motions['motion'][[self.absl_idx]] |
|
self.bs, self.njoints, self.nfeats, self.nframes = self.motions['motion'].shape |
|
self.real_num_frames = self.motions['lengths'][self.absl_idx] |
|
|
|
self.vertices = self.rot2xyz(torch.tensor(self.motions['motion']), mask=None, |
|
pose_rep='rot6d', translation=True, glob=True, |
|
jointstype='vertices', |
|
|
|
vertstrans=True) |
|
self.root_loc = self.motions['motion'][:, -1, :3, :].reshape(1, 1, 3, -1) |
|
self.vertices += self.root_loc |
|
|
|
def get_vertices(self, sample_i, frame_i): |
|
return self.vertices[sample_i, :, :, frame_i].squeeze().tolist() |
|
|
|
def get_trimesh(self, sample_i, frame_i): |
|
return Trimesh(vertices=self.get_vertices(sample_i, frame_i), |
|
faces=self.faces) |
|
|
|
def save_obj(self, save_path, frame_i): |
|
mesh = self.get_trimesh(0, frame_i) |
|
with open(save_path, 'w') as fw: |
|
mesh.export(fw, 'obj') |
|
return save_path |
|
|
|
def save_npy(self, save_path): |
|
data_dict = { |
|
'motion': self.motions['motion'][0, :, :, :self.real_num_frames], |
|
'thetas': self.motions['motion'][0, :-1, :, :self.real_num_frames], |
|
'root_translation': self.motions['motion'][0, -1, :3, :self.real_num_frames], |
|
'faces': self.faces, |
|
'vertices': self.vertices[0, :, :, :self.real_num_frames], |
|
'text': self.motions['text'][0], |
|
'length': self.real_num_frames, |
|
} |
|
np.save(save_path, data_dict) |
|
|