|
import sys |
|
import os |
|
import OpenGL.GL as gl |
|
os.environ["PYOPENGL_PLATFORM"] = "egl" |
|
sys.argv = ['VQ-Trans/GPT_eval_multi.py'] |
|
os.umask(0) |
|
os.makedirs('output', exist_ok=True) |
|
os.chdir('VQ-Trans') |
|
os.umask(0) |
|
os.makedirs('checkpoints', exist_ok=True) |
|
os.system('gdown --fuzzy https://drive.google.com/file/d/1chKRmW2vNX5Lz6dPO45WY1qVNUkoJJ5D/view -O checkpoints/') |
|
os.system('gdown --fuzzy https://drive.google.com/file/d/1cgUVeGwPU7PzTDx20CAijt18fNhtnOPq/view -O checkpoints/') |
|
|
|
|
|
os.system('unzip checkpoints/t2m.zip') |
|
os.system('unzip checkpoints/kit.zip') |
|
os.system('mv kit checkpoints') |
|
os.system('mv t2m checkpoints') |
|
os.system('rm checkpoints/t2m.zip') |
|
os.system('rm checkpoints/kit.zip') |
|
sys.path.append('/home/user/app/VQ-Trans') |
|
|
|
import options.option_transformer as option_trans |
|
from huggingface_hub import snapshot_download |
|
model_path = snapshot_download(repo_id="vumichien/T2M-GPT") |
|
|
|
args = option_trans.get_args_parser() |
|
|
|
args.dataname = 't2m' |
|
args.resume_pth = f'{model_path}/VQVAE/net_last.pth' |
|
args.resume_trans = f'{model_path}/VQTransformer_corruption05/net_best_fid.pth' |
|
args.down_t = 2 |
|
args.depth = 3 |
|
args.block_size = 51 |
|
|
|
import clip |
|
import torch |
|
import numpy as np |
|
import models.vqvae as vqvae |
|
import models.t2m_trans as trans |
|
from utils.motion_process import recover_from_ric |
|
import visualization.plot_3d_global as plot_3d |
|
from models.rotation2xyz import Rotation2xyz |
|
import numpy as np |
|
from trimesh import Trimesh |
|
import gc |
|
|
|
import torch |
|
from visualize.simplify_loc2rot import joints2smpl |
|
import pyrender |
|
|
|
|
|
import io |
|
import imageio |
|
from shapely import geometry |
|
import trimesh |
|
from pyrender.constants import RenderFlags |
|
import math |
|
|
|
|
|
import hashlib |
|
import gradio as gr |
|
|
|
|
|
is_cuda = torch.cuda.is_available() |
|
device = torch.device("cuda" if is_cuda else "cpu") |
|
print(device) |
|
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device, jit=False, download_root='./') |
|
clip.model.convert_weights(clip_model) |
|
clip_model.eval() |
|
for p in clip_model.parameters(): |
|
p.requires_grad = False |
|
|
|
net = vqvae.HumanVQVAE(args, |
|
args.nb_code, |
|
args.code_dim, |
|
args.output_emb_width, |
|
args.down_t, |
|
args.stride_t, |
|
args.width, |
|
args.depth, |
|
args.dilation_growth_rate) |
|
|
|
|
|
trans_encoder = trans.Text2Motion_Transformer(num_vq=args.nb_code, |
|
embed_dim=1024, |
|
clip_dim=args.clip_dim, |
|
block_size=args.block_size, |
|
num_layers=9, |
|
n_head=16, |
|
drop_out_rate=args.drop_out_rate, |
|
fc_rate=args.ff_rate) |
|
|
|
|
|
print('loading checkpoint from {}'.format(args.resume_pth)) |
|
ckpt = torch.load(args.resume_pth, map_location='cpu') |
|
net.load_state_dict(ckpt['net'], strict=True) |
|
net.eval() |
|
|
|
print('loading transformer checkpoint from {}'.format(args.resume_trans)) |
|
ckpt = torch.load(args.resume_trans, map_location='cpu') |
|
trans_encoder.load_state_dict(ckpt['trans'], strict=True) |
|
trans_encoder.eval() |
|
mean = torch.from_numpy(np.load('./checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta/mean.npy')) |
|
std = torch.from_numpy(np.load('./checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta/std.npy')) |
|
if is_cuda: |
|
net.cuda() |
|
trans_encoder.cuda() |
|
mean = mean.cuda() |
|
std = std.cuda() |
|
|
|
|
|
def render(motions, device_id=0, name='test_vis'): |
|
frames, njoints, nfeats = motions.shape |
|
MINS = motions.min(axis=0).min(axis=0) |
|
MAXS = motions.max(axis=0).max(axis=0) |
|
|
|
height_offset = MINS[1] |
|
motions[:, :, 1] -= height_offset |
|
trajec = motions[:, 0, [0, 2]] |
|
is_cuda = torch.cuda.is_available() |
|
|
|
j2s = joints2smpl(num_frames=frames, device_id=0, cuda=is_cuda) |
|
rot2xyz = Rotation2xyz(device=device) |
|
faces = rot2xyz.smpl_model.faces |
|
|
|
if not os.path.exists(f'output/{name}_pred.pt'): |
|
print(f'Running SMPLify, it may take a few minutes.') |
|
motion_tensor, opt_dict = j2s.joint2smpl(motions) |
|
|
|
vertices = rot2xyz(torch.tensor(motion_tensor).clone(), mask=None, |
|
pose_rep='rot6d', translation=True, glob=True, |
|
jointstype='vertices', |
|
vertstrans=True) |
|
vertices = vertices.detach().cpu() |
|
torch.save(vertices, f'output/{name}_pred.pt') |
|
else: |
|
vertices = torch.load(f'output/{name}_pred.pt') |
|
frames = vertices.shape[3] |
|
print(vertices.shape) |
|
MINS = torch.min(torch.min(vertices[0], axis=0)[0], axis=1)[0] |
|
MAXS = torch.max(torch.max(vertices[0], axis=0)[0], axis=1)[0] |
|
|
|
out_list = [] |
|
|
|
minx = MINS[0] - 0.5 |
|
maxx = MAXS[0] + 0.5 |
|
minz = MINS[2] - 0.5 |
|
maxz = MAXS[2] + 0.5 |
|
polygon = geometry.Polygon([[minx, minz], [minx, maxz], [maxx, maxz], [maxx, minz]]) |
|
polygon_mesh = trimesh.creation.extrude_polygon(polygon, 1e-5) |
|
|
|
vid = [] |
|
for i in range(frames): |
|
if i % 10 == 0: |
|
print(i) |
|
|
|
mesh = Trimesh(vertices=vertices[0, :, :, i].squeeze().tolist(), faces=faces) |
|
|
|
base_color = (0.11, 0.53, 0.8, 0.5) |
|
|
|
|
|
material = pyrender.MetallicRoughnessMaterial( |
|
metallicFactor=0.7, |
|
alphaMode='OPAQUE', |
|
baseColorFactor=base_color |
|
) |
|
|
|
|
|
mesh = pyrender.Mesh.from_trimesh(mesh, material=material) |
|
|
|
polygon_mesh.visual.face_colors = [0, 0, 0, 0.21] |
|
polygon_render = pyrender.Mesh.from_trimesh(polygon_mesh, smooth=False) |
|
|
|
bg_color = [1, 1, 1, 0.8] |
|
scene = pyrender.Scene(bg_color=bg_color, ambient_light=(0.4, 0.4, 0.4)) |
|
|
|
sx, sy, tx, ty = [0.75, 0.75, 0, 0.10] |
|
|
|
camera = pyrender.PerspectiveCamera(yfov=(np.pi / 3.0)) |
|
|
|
light = pyrender.DirectionalLight(color=[1,1,1], intensity=300) |
|
|
|
scene.add(mesh) |
|
|
|
c = np.pi / 2 |
|
|
|
scene.add(polygon_render, pose=np.array([[ 1, 0, 0, 0], |
|
|
|
[ 0, np.cos(c), -np.sin(c), MINS[1].cpu().numpy()], |
|
|
|
[ 0, np.sin(c), np.cos(c), 0], |
|
|
|
[ 0, 0, 0, 1]])) |
|
|
|
light_pose = np.eye(4) |
|
light_pose[:3, 3] = [0, -1, 1] |
|
scene.add(light, pose=light_pose.copy()) |
|
|
|
light_pose[:3, 3] = [0, 1, 1] |
|
scene.add(light, pose=light_pose.copy()) |
|
|
|
light_pose[:3, 3] = [1, 1, 2] |
|
scene.add(light, pose=light_pose.copy()) |
|
|
|
|
|
c = -np.pi / 6 |
|
|
|
scene.add(camera, pose=[[ 1, 0, 0, (minx+maxx).cpu().numpy()/2], |
|
|
|
[ 0, np.cos(c), -np.sin(c), 1.5], |
|
|
|
[ 0, np.sin(c), np.cos(c), max(4, minz.cpu().numpy()+(1.5-MINS[1].cpu().numpy())*2, (maxx-minx).cpu().numpy())], |
|
|
|
[ 0, 0, 0, 1] |
|
]) |
|
|
|
|
|
r = pyrender.OffscreenRenderer(960, 960) |
|
|
|
color, _ = r.render(scene, flags=RenderFlags.RGBA) |
|
|
|
|
|
vid.append(color) |
|
|
|
r.delete() |
|
|
|
out = np.stack(vid, axis=0) |
|
imageio.mimwrite(f'output/results.gif', out, fps=20) |
|
del out, vertices |
|
return f'output/results.gif' |
|
|
|
def predict(clip_text, method='fast'): |
|
gc.collect() |
|
if torch.cuda.is_available(): |
|
text = clip.tokenize([clip_text], truncate=True).cuda() |
|
else: |
|
text = clip.tokenize([clip_text], truncate=True) |
|
feat_clip_text = clip_model.encode_text(text).float() |
|
index_motion = trans_encoder.sample(feat_clip_text[0:1], False) |
|
pred_pose = net.forward_decoder(index_motion) |
|
pred_xyz = recover_from_ric((pred_pose*std+mean).float(), 22) |
|
output_name = hashlib.md5(clip_text.encode()).hexdigest() |
|
if method == 'fast': |
|
xyz = pred_xyz.reshape(1, -1, 22, 3) |
|
pose_vis = plot_3d.draw_to_batch(xyz.detach().cpu().numpy(), title_batch=None, outname=[f'output/results.gif']) |
|
return f'output/results.gif' |
|
elif method == 'slow': |
|
output_path = render(pred_xyz.detach().cpu().numpy().squeeze(axis=0), device_id=0, name=output_name) |
|
return output_path |
|
|
|
|
|
|
|
text_prompt = gr.Textbox(label="Text prompt", lines=1, interactive=True) |
|
video_out = gr.Video(label="Motion", mirror_webcam=False, interactive=False) |
|
demo = gr.Blocks() |
|
demo.encrypt = False |
|
|
|
with demo: |
|
gr.Markdown(''' |
|
<div> |
|
<h1 style='text-align: center'>Generating Human Motion from Textual Descriptions with Discrete Representations (T2M-GPT)</h1> |
|
This space uses <a href='https://mael-zys.github.io/T2M-GPT/' target='_blank'><b>T2M-GPT models</b></a> based on Vector Quantised-Variational AutoEncoder (VQ-VAE) and Generative Pre-trained Transformer (GPT) for human motion generation from textural descriptions🤗 |
|
<figure> |
|
<img src="https://huggingface.co/vumichien/T2M-GPT/resolve/main/Teaser.png" alt="T2M-GPT", width="425", height=850> |
|
<figcaption>Audio-visual HuBERT |
|
</figcaption> |
|
</figure> |
|
</div> |
|
''') |
|
with gr.Row(): |
|
gr.Markdown(''' |
|
### Generate human motion by **T2M-GPT** |
|
##### Step 1. Give prompt text describing human motion |
|
##### Step 2. Choice method to generate output (Fast: Sketch skeleton; Slow: SMPL mesh) |
|
##### Step 3. Generate output and enjoy |
|
''') |
|
with gr.Row(): |
|
gr.Markdown(''' |
|
### You can test by following examples: |
|
''') |
|
examples = gr.Examples(examples= |
|
[ "a person jogs in place, slowly at first, then increases speed. they then back up and squat down.", |
|
"a man steps forward and does a handstand", |
|
"a man rises from the ground, walks in a circle and sits back down on the ground"], |
|
label="Examples", inputs=[text_prompt]) |
|
|
|
with gr.Column(): |
|
with gr.Row(): |
|
text_prompt.render() |
|
method = gr.Dropdown(["slow", "fast"], label="Method", value="fast") |
|
with gr.Row(): |
|
generate_btn = gr.Button("Generate") |
|
generate_btn.click(predict, [text_prompt, method], [video_out]) |
|
print(video_out) |
|
with gr.Row(): |
|
video_out.render() |
|
|
|
demo.launch(debug=True) |
|
|