|
import torch |
|
import torch.nn.functional as F |
|
from visualize.joints2smpl.src import config |
|
|
|
|
|
def gmof(x, sigma): |
|
""" |
|
Geman-McClure error function |
|
""" |
|
x_squared = x ** 2 |
|
sigma_squared = sigma ** 2 |
|
return (sigma_squared * x_squared) / (sigma_squared + x_squared) |
|
|
|
|
|
def angle_prior(pose): |
|
""" |
|
Angle prior that penalizes unnatural bending of the knees and elbows |
|
""" |
|
|
|
return torch.exp( |
|
pose[:, [55 - 3, 58 - 3, 12 - 3, 15 - 3]] * torch.tensor([1., -1., -1, -1.], device=pose.device)) ** 2 |
|
|
|
|
|
def perspective_projection(points, rotation, translation, |
|
focal_length, camera_center): |
|
""" |
|
This function computes the perspective projection of a set of points. |
|
Input: |
|
points (bs, N, 3): 3D points |
|
rotation (bs, 3, 3): Camera rotation |
|
translation (bs, 3): Camera translation |
|
focal_length (bs,) or scalar: Focal length |
|
camera_center (bs, 2): Camera center |
|
""" |
|
batch_size = points.shape[0] |
|
K = torch.zeros([batch_size, 3, 3], device=points.device) |
|
K[:, 0, 0] = focal_length |
|
K[:, 1, 1] = focal_length |
|
K[:, 2, 2] = 1. |
|
K[:, :-1, -1] = camera_center |
|
|
|
|
|
points = torch.einsum('bij,bkj->bki', rotation, points) |
|
points = points + translation.unsqueeze(1) |
|
|
|
|
|
projected_points = points / points[:, :, -1].unsqueeze(-1) |
|
|
|
|
|
projected_points = torch.einsum('bij,bkj->bki', K, projected_points) |
|
|
|
return projected_points[:, :, :-1] |
|
|
|
|
|
def body_fitting_loss(body_pose, betas, model_joints, camera_t, camera_center, |
|
joints_2d, joints_conf, pose_prior, |
|
focal_length=5000, sigma=100, pose_prior_weight=4.78, |
|
shape_prior_weight=5, angle_prior_weight=15.2, |
|
output='sum'): |
|
""" |
|
Loss function for body fitting |
|
""" |
|
batch_size = body_pose.shape[0] |
|
rotation = torch.eye(3, device=body_pose.device).unsqueeze(0).expand(batch_size, -1, -1) |
|
|
|
projected_joints = perspective_projection(model_joints, rotation, camera_t, |
|
focal_length, camera_center) |
|
|
|
|
|
reprojection_error = gmof(projected_joints - joints_2d, sigma) |
|
reprojection_loss = (joints_conf ** 2) * reprojection_error.sum(dim=-1) |
|
|
|
|
|
pose_prior_loss = (pose_prior_weight ** 2) * pose_prior(body_pose, betas) |
|
|
|
|
|
angle_prior_loss = (angle_prior_weight ** 2) * angle_prior(body_pose).sum(dim=-1) |
|
|
|
|
|
shape_prior_loss = (shape_prior_weight ** 2) * (betas ** 2).sum(dim=-1) |
|
|
|
total_loss = reprojection_loss.sum(dim=-1) + pose_prior_loss + angle_prior_loss + shape_prior_loss |
|
|
|
if output == 'sum': |
|
return total_loss.sum() |
|
elif output == 'reprojection': |
|
return reprojection_loss |
|
|
|
|
|
|
|
def camera_fitting_loss(model_joints, camera_t, camera_t_est, camera_center, |
|
joints_2d, joints_conf, |
|
focal_length=5000, depth_loss_weight=100): |
|
""" |
|
Loss function for camera optimization. |
|
""" |
|
|
|
batch_size = model_joints.shape[0] |
|
rotation = torch.eye(3, device=model_joints.device).unsqueeze(0).expand(batch_size, -1, -1) |
|
projected_joints = perspective_projection(model_joints, rotation, camera_t, |
|
focal_length, camera_center) |
|
|
|
|
|
op_joints = ['OP RHip', 'OP LHip', 'OP RShoulder', 'OP LShoulder'] |
|
op_joints_ind = [config.JOINT_MAP[joint] for joint in op_joints] |
|
gt_joints = ['RHip', 'LHip', 'RShoulder', 'LShoulder'] |
|
gt_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints] |
|
|
|
reprojection_error_op = (joints_2d[:, op_joints_ind] - |
|
projected_joints[:, op_joints_ind]) ** 2 |
|
reprojection_error_gt = (joints_2d[:, gt_joints_ind] - |
|
projected_joints[:, gt_joints_ind]) ** 2 |
|
|
|
|
|
|
|
is_valid = (joints_conf[:, op_joints_ind].min(dim=-1)[0][:, None, None] > 0).float() |
|
reprojection_loss = (is_valid * reprojection_error_op + (1 - is_valid) * reprojection_error_gt).sum(dim=(1, 2)) |
|
|
|
|
|
depth_loss = (depth_loss_weight ** 2) * (camera_t[:, 2] - camera_t_est[:, 2]) ** 2 |
|
|
|
total_loss = reprojection_loss + depth_loss |
|
return total_loss.sum() |
|
|
|
|
|
|
|
|
|
def body_fitting_loss_3d(body_pose, preserve_pose, |
|
betas, model_joints, camera_translation, |
|
j3d, pose_prior, |
|
joints3d_conf, |
|
sigma=100, pose_prior_weight=4.78*1.5, |
|
shape_prior_weight=5.0, angle_prior_weight=15.2, |
|
joint_loss_weight=500.0, |
|
pose_preserve_weight=0.0, |
|
use_collision=False, |
|
model_vertices=None, model_faces=None, |
|
search_tree=None, pen_distance=None, filter_faces=None, |
|
collision_loss_weight=1000 |
|
): |
|
""" |
|
Loss function for body fitting |
|
""" |
|
batch_size = body_pose.shape[0] |
|
|
|
|
|
|
|
joint3d_error = gmof((model_joints + camera_translation) - j3d, sigma) |
|
|
|
joint3d_loss_part = (joints3d_conf ** 2) * joint3d_error.sum(dim=-1) |
|
joint3d_loss = ((joint_loss_weight ** 2) * joint3d_loss_part).sum(dim=-1) |
|
|
|
|
|
pose_prior_loss = (pose_prior_weight ** 2) * pose_prior(body_pose, betas) |
|
|
|
angle_prior_loss = (angle_prior_weight ** 2) * angle_prior(body_pose).sum(dim=-1) |
|
|
|
shape_prior_loss = (shape_prior_weight ** 2) * (betas ** 2).sum(dim=-1) |
|
|
|
collision_loss = 0.0 |
|
|
|
if use_collision: |
|
triangles = torch.index_select( |
|
model_vertices, 1, |
|
model_faces).view(batch_size, -1, 3, 3) |
|
|
|
with torch.no_grad(): |
|
collision_idxs = search_tree(triangles) |
|
|
|
|
|
if filter_faces is not None: |
|
collision_idxs = filter_faces(collision_idxs) |
|
|
|
if collision_idxs.ge(0).sum().item() > 0: |
|
collision_loss = torch.sum(collision_loss_weight * pen_distance(triangles, collision_idxs)) |
|
|
|
pose_preserve_loss = (pose_preserve_weight ** 2) * ((body_pose - preserve_pose) ** 2).sum(dim=-1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
total_loss = joint3d_loss + pose_prior_loss + angle_prior_loss + shape_prior_loss + collision_loss + pose_preserve_loss |
|
|
|
return total_loss.sum() |
|
|
|
|
|
|
|
def camera_fitting_loss_3d(model_joints, camera_t, camera_t_est, |
|
j3d, joints_category="orig", depth_loss_weight=100.0): |
|
""" |
|
Loss function for camera optimization. |
|
""" |
|
model_joints = model_joints + camera_t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gt_joints = ['RHip', 'LHip', 'RShoulder', 'LShoulder'] |
|
gt_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints] |
|
|
|
if joints_category=="orig": |
|
select_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints] |
|
elif joints_category=="AMASS": |
|
select_joints_ind = [config.AMASS_JOINT_MAP[joint] for joint in gt_joints] |
|
else: |
|
print("NO SUCH JOINTS CATEGORY!") |
|
|
|
j3d_error_loss = (j3d[:, select_joints_ind] - |
|
model_joints[:, gt_joints_ind]) ** 2 |
|
|
|
|
|
depth_loss = (depth_loss_weight**2) * (camera_t - camera_t_est)**2 |
|
|
|
total_loss = j3d_error_loss + depth_loss |
|
return total_loss.sum() |
|
|