Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
from pathlib import Path | |
from datasets import load_dataset | |
import os | |
from huggingface_hub import HfApi, Repository | |
import numpy as np | |
api = HfApi() | |
COLLAB_TOKEN = os.environ.get("COLLAB_TOKEN") | |
evals_repo = "ai2-rlhf-collab/rm-benchmark-results" | |
BASE_DIR = "./evals/" | |
# def restart_space(): | |
# api.restart_space(repo_id="ai2-rlhf-collab/rm-benchmark-viewer", token=COLLAB_TOKEN) | |
# From Open LLM Leaderboard | |
def model_hyperlink(link, model_name): | |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>' | |
print("Pulling evaluation results") | |
repo = Repository( | |
local_dir=BASE_DIR, | |
clone_from=evals_repo, | |
use_auth_token=COLLAB_TOKEN, | |
repo_type="dataset", | |
) | |
repo.git_pull() | |
# Define a function to fetch and process data | |
def fetch_and_display_data(): # use HF api to pull the git repo | |
dir = Path(BASE_DIR) | |
data_dir = dir / "data" | |
orgs = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, d))] | |
# get all files within the sub folders orgs | |
models_results = [] | |
for org in orgs: | |
org_dir = data_dir / org | |
files = [f for f in os.listdir(org_dir) if os.path.isfile(os.path.join(org_dir, f))] | |
for file in files: | |
if file.endswith(".json"): | |
models_results.append(org + "/" + file) | |
# create empty dataframe to add all data to | |
df = pd.DataFrame() | |
# load all json data in the list models_results one by one to avoid not having the same entries | |
for model in models_results: | |
model_data = load_dataset("json", data_files=BASE_DIR + "data/" + model, split="train") | |
df2 = pd.DataFrame(model_data) | |
# add to df | |
df = pd.concat([df2, df]) | |
# remove chat_template comlumn | |
df = df.drop(columns=["chat_template"]) | |
# move column "model" to the front | |
cols = list(df.columns) | |
cols.insert(0, cols.pop(cols.index('model'))) | |
df = df.loc[:, cols] | |
# select all columns except "model" | |
cols = df.columns.tolist() | |
cols.remove("model") | |
# round | |
df[cols] = df[cols].round(2) | |
avg = np.mean(df[cols].values,axis=1).round(2) | |
# add average column | |
df["average"] = avg | |
# apply model_hyperlink function to column "model" | |
df["model"] = df["model"].apply(lambda x: model_hyperlink(f"https://huggingface.co/{x}", x)) | |
# move average column to the second | |
cols = list(df.columns) | |
cols.insert(1, cols.pop(cols.index('average'))) | |
df = df.loc[:, cols] | |
return df | |
benchmark_text = """ | |
# HERM Results Viewer | |
We compute the win percentage for a reward model on hand curated chosen-rejected pairs for each prompt. | |
A win is when the score for the chosen response is higher than the score for the rejected response. | |
### Subset summary | |
| Subset | Num. Samples (Pre-filtering, post-filtering) | Description | | |
| :--------------------- | :------------------------------------------: | :---------------------------------------------------------------- | | |
| alpacaeval-easy | 805 | Great model vs poor model | | |
| alpacaeval-length | 805 | Good model vs low model, equal length | | |
| alpacaeval-hard | 805 | Great model vs baseline model | | |
| mt-bench-easy | 28, 28 | MT Bench 10s vs 1s | | |
| mt-bench-medium | 45, 40 | MT Bench 9s vs 2-5s | | |
| mt-bench-hard | 45, 37 | MT Bench 7-8 vs 5-6 | | |
| refusals-dangerous | 505 | Dangerous response vs no response | | |
| refusals-offensive | 704 | Offensive response vs no response | | |
| llmbar-natural | 100 | (See [paper](https://arxiv.org/abs/2310.07641)) Manually curated instruction pairs | | |
| llmbar-adver-neighbor | 134 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. off-topic prompt response | | |
| llmbar-adver-GPTInst | 92 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. GPT4 generated off-topic prompt response | | |
| llmbar-adver-GPTOut | 47 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. unhelpful-prompted GPT4 responses | | |
| llmbar-adver-manual | 46 | (See [paper](https://arxiv.org/abs/2310.07641)) Challenge set chosen vs. rejected | | |
| XSTest | 450 | TODO curate | | |
| (?) repetitiveness | | | | |
| (?) grammar | | | | |
For more details, see the [dataset](https://huggingface.co/datasets/ai2-rlhf-collab/rm-benchmark-dev). | |
""" | |
leaderboard_data = fetch_and_display_data() | |
col_types = ["markdown"] + ["number"] * (len(leaderboard_data.columns) - 1) | |
with gr.Blocks() as app: | |
with gr.Row(): | |
gr.Markdown(benchmark_text) | |
with gr.Row(): | |
output_table = gr.Dataframe( | |
leaderboard_data.values, | |
datatype=col_types, | |
headers=leaderboard_data.columns.tolist(), | |
elem_id="leaderboard_dataframe", | |
) | |
# Load data when app starts | |
def load_data_on_start(): | |
data = fetch_and_display_data() | |
output_table.update(data) | |
app.launch() | |