reward-bench / app.py
natolambert's picture
clickable
b514443
raw
history blame
6.28 kB
import gradio as gr
import pandas as pd
from pathlib import Path
from datasets import load_dataset
import os
from huggingface_hub import HfApi, Repository
import numpy as np
api = HfApi()
COLLAB_TOKEN = os.environ.get("COLLAB_TOKEN")
evals_repo = "ai2-rlhf-collab/rm-benchmark-results"
BASE_DIR = "./evals/"
# def restart_space():
# api.restart_space(repo_id="ai2-rlhf-collab/rm-benchmark-viewer", token=COLLAB_TOKEN)
# From Open LLM Leaderboard
def model_hyperlink(link, model_name):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
print("Pulling evaluation results")
repo = Repository(
local_dir=BASE_DIR,
clone_from=evals_repo,
use_auth_token=COLLAB_TOKEN,
repo_type="dataset",
)
repo.git_pull()
# Define a function to fetch and process data
def fetch_and_display_data(): # use HF api to pull the git repo
dir = Path(BASE_DIR)
data_dir = dir / "data"
orgs = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, d))]
# get all files within the sub folders orgs
models_results = []
for org in orgs:
org_dir = data_dir / org
files = [f for f in os.listdir(org_dir) if os.path.isfile(os.path.join(org_dir, f))]
for file in files:
if file.endswith(".json"):
models_results.append(org + "/" + file)
# create empty dataframe to add all data to
df = pd.DataFrame()
# load all json data in the list models_results one by one to avoid not having the same entries
for model in models_results:
model_data = load_dataset("json", data_files=BASE_DIR + "data/" + model, split="train")
df2 = pd.DataFrame(model_data)
# add to df
df = pd.concat([df2, df])
# remove chat_template comlumn
df = df.drop(columns=["chat_template"])
# move column "model" to the front
cols = list(df.columns)
cols.insert(0, cols.pop(cols.index('model')))
df = df.loc[:, cols]
# select all columns except "model"
cols = df.columns.tolist()
cols.remove("model")
# round
df[cols] = df[cols].round(2)
avg = np.mean(df[cols].values,axis=1).round(2)
# add average column
df["average"] = avg
# apply model_hyperlink function to column "model"
df["model"] = df["model"].apply(lambda x: model_hyperlink(f"https://huggingface.co/{x}", x))
# move average column to the second
cols = list(df.columns)
cols.insert(1, cols.pop(cols.index('average')))
df = df.loc[:, cols]
return df
benchmark_text = """
# HERM Results Viewer
We compute the win percentage for a reward model on hand curated chosen-rejected pairs for each prompt.
A win is when the score for the chosen response is higher than the score for the rejected response.
### Subset summary
| Subset | Num. Samples (Pre-filtering, post-filtering) | Description |
| :--------------------- | :------------------------------------------: | :---------------------------------------------------------------- |
| alpacaeval-easy | 805 | Great model vs poor model |
| alpacaeval-length | 805 | Good model vs low model, equal length |
| alpacaeval-hard | 805 | Great model vs baseline model |
| mt-bench-easy | 28, 28 | MT Bench 10s vs 1s |
| mt-bench-medium | 45, 40 | MT Bench 9s vs 2-5s |
| mt-bench-hard | 45, 37 | MT Bench 7-8 vs 5-6 |
| refusals-dangerous | 505 | Dangerous response vs no response |
| refusals-offensive | 704 | Offensive response vs no response |
| llmbar-natural | 100 | (See [paper](https://arxiv.org/abs/2310.07641)) Manually curated instruction pairs |
| llmbar-adver-neighbor | 134 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. off-topic prompt response |
| llmbar-adver-GPTInst | 92 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. GPT4 generated off-topic prompt response |
| llmbar-adver-GPTOut | 47 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. unhelpful-prompted GPT4 responses |
| llmbar-adver-manual | 46 | (See [paper](https://arxiv.org/abs/2310.07641)) Challenge set chosen vs. rejected |
| XSTest | 450 | TODO curate |
| (?) repetitiveness | | |
| (?) grammar | | |
For more details, see the [dataset](https://huggingface.co/datasets/ai2-rlhf-collab/rm-benchmark-dev).
"""
leaderboard_data = fetch_and_display_data()
col_types = ["markdown"] + ["number"] * (len(leaderboard_data.columns) - 1)
with gr.Blocks() as app:
with gr.Row():
gr.Markdown(benchmark_text)
with gr.Row():
output_table = gr.Dataframe(
leaderboard_data.values,
datatype=col_types,
headers=leaderboard_data.columns.tolist(),
elem_id="leaderboard_dataframe",
)
# Load data when app starts
def load_data_on_start():
data = fetch_and_display_data()
output_table.update(data)
app.launch()