File size: 4,173 Bytes
9ceb843
 
 
 
 
0b8c16d
9ceb843
 
 
90eea3b
 
9ceb843
 
0b8c16d
 
 
 
 
 
 
 
 
 
 
9ceb843
ab74236
9ceb843
ab74236
9ceb843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab74236
9ceb843
 
 
 
 
 
 
 
35e2ca1
 
 
9ceb843
 
 
 
 
 
 
 
b7aaef4
 
 
faa2dab
 
 
8799e00
 
 
 
 
06fd8bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e0e569
 
 
 
 
 
 
06fd8bd
9ceb843
521165c
 
9ceb843
 
 
 
 
 
 
 
 
 
56fcfaf
b7aaef4
 
 
 
 
 
9f4ce43
 
 
9ceb843
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import pandas as pd
from pathlib import Path
from datasets import load_dataset
import numpy as np
import os
import re

# From Open LLM Leaderboard
def model_hyperlink(link, model_name):
    if model_name == "random":
        return "random"
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'

def undo_hyperlink(html_string):
    # Regex pattern to match content inside > and <
    pattern = r'>[^<]+<'
    match = re.search(pattern, html_string)
    if match:
        # Extract the matched text and remove leading '>' and trailing '<'
        return match.group(0)[1:-1]
    else:
        return "No text found"


# Define a function to fetch and process data
def load_all_data(data_repo, subdir:str, subsubsets=False):    # use HF api to pull the git repo
    dir = Path(data_repo)
    data_dir = dir / subdir
    orgs = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, d))]
    # get all files within the sub folders orgs
    models_results = []
    for org in orgs:
        org_dir = data_dir / org
        files = [f for f in os.listdir(org_dir) if os.path.isfile(os.path.join(org_dir, f))]
        for file in files:
            if file.endswith(".json"):
                models_results.append(org + "/" + file)

    # create empty dataframe to add all data to
    df = pd.DataFrame()

    # load all json data in the list models_results one by one to avoid not having the same entries
    for model in models_results:
        model_data = load_dataset("json", data_files=data_repo + subdir+ "/" + model, split="train")
        df2 = pd.DataFrame(model_data)
        # add to df
        df = pd.concat([df2, df])


    # remove chat_template comlumn
    df = df.drop(columns=["chat_template"])

    # sort columns alphabetically
    df = df.reindex(sorted(df.columns), axis=1)
    
    # move column "model" to the front
    cols = list(df.columns)
    cols.insert(0, cols.pop(cols.index('model')))
    df = df.loc[:, cols]

    # select all columns except "model"
    cols = df.columns.tolist()
    cols.remove("model")
    # if model_type is a column (pref tests may not have it)
    if "model_type" in cols:
        cols.remove("model_type")
    # remove ref_model if in columns
    if "ref_model" in cols:
        cols.remove("ref_model")
    # remove model_beaker from dataframe
    if "model_beaker" in cols:
        cols.remove("model_beaker")
        df = df.drop(columns=["model_beaker"])
    
    # remove column xstest (outdated data)
    # if xstest is a column
    if "xstest" in cols:
        df = df.drop(columns=["xstest"])
        cols.remove("xstest")

    if "ref_model" in df.columns:
        df = df.drop(columns=["ref_model"])

    # remove column anthropic and summarize_prompted (outdated data)
    if "anthropic" in cols:
        df = df.drop(columns=["anthropic"])
        cols.remove("anthropic")
    if "summarize_prompted" in cols:
        df = df.drop(columns=["summarize_prompted"])
        cols.remove("summarize_prompted")
    # remove pku_better and pku_safer (removed from the leaderboard)
    if "pku_better" in cols:
        df = df.drop(columns=["pku_better"])
        cols.remove("pku_better")
    if "pku_safer" in cols:
        df = df.drop(columns=["pku_safer"])
        cols.remove("pku_safer")

    # round 
    df[cols] = (df[cols]*100).round(1)
    avg = np.nanmean(df[cols].values,axis=1).round(1)
    # add average column
    df["average"] = avg
    
    # apply model_hyperlink function to column "model"
    df["model"] = df["model"].apply(lambda x: model_hyperlink(f"https://huggingface.co/{x}", x))

    # move average column to the second
    cols = list(df.columns)
    cols.insert(1, cols.pop(cols.index('average')))
    df = df.loc[:, cols]

    # move model_type column to first
    if "model_type" in cols:
        cols = list(df.columns)
        cols.insert(1, cols.pop(cols.index('model_type')))
        df = df.loc[:, cols]

    # remove models with DPO Ref. Free as type (future work)
    df = df[~df["model_type"].str.contains("DPO Ref. Free", na=False)]

    return df