Spaces:
Runtime error
Runtime error
Commit
·
4aeda1d
1
Parent(s):
5c0f6b5
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import librosa
|
4 |
-
import numpy as np
|
5 |
from transformers import pipeline
|
6 |
from stitched_model import CombinedModel
|
7 |
|
@@ -10,34 +9,7 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
10 |
# Load the model
|
11 |
model = CombinedModel("facebook/mms-1b-all", "Sunbird/sunbird-mul-en-mbart-merged", device=device)
|
12 |
|
13 |
-
def
|
14 |
-
speech, sample_rate = librosa.load(audio_file, sr=16000, mono=True)
|
15 |
-
chunk_size = 10 * 16000
|
16 |
-
chunks = []
|
17 |
-
for i in range(0, len(speech), chunk_size):
|
18 |
-
chunk = speech[i:i + chunk_size]
|
19 |
-
if len(chunk) < chunk_size:
|
20 |
-
# Pad the last chunk if its duration is less than 10 seconds
|
21 |
-
chunk = np.pad(chunk, (0, chunk_size - len(chunk)))
|
22 |
-
chunks.append(chunk)
|
23 |
-
return chunks
|
24 |
-
|
25 |
-
def transcribe(chunks):
|
26 |
-
transcriptions = []
|
27 |
-
translations = []
|
28 |
-
for chunk in chunks:
|
29 |
-
chunk = torch.tensor([chunk])
|
30 |
-
with torch.no_grad():
|
31 |
-
transcription, translation = model({"audio": chunk})
|
32 |
-
transcriptions.append(transcription)
|
33 |
-
translations.append(translation[0])
|
34 |
-
|
35 |
-
transcription = "".join(transcriptions)
|
36 |
-
translation = " ".join(translations)
|
37 |
-
|
38 |
-
return transcription, translation
|
39 |
-
|
40 |
-
def process_audio(audio_file_mic=None, audio_file_upload=None):
|
41 |
if audio_file_mic:
|
42 |
audio_file = audio_file_mic
|
43 |
elif audio_file_upload:
|
@@ -45,19 +17,28 @@ def process_audio(audio_file_mic=None, audio_file_upload=None):
|
|
45 |
else:
|
46 |
return "Please upload an audio file or record one"
|
47 |
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
return transcription, translation
|
51 |
|
52 |
description = '''Luganda to English Speech Translation'''
|
53 |
|
54 |
-
iface = gr.Interface(
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
63 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import librosa
|
|
|
4 |
from transformers import pipeline
|
5 |
from stitched_model import CombinedModel
|
6 |
|
|
|
9 |
# Load the model
|
10 |
model = CombinedModel("facebook/mms-1b-all", "Sunbird/sunbird-mul-en-mbart-merged", device=device)
|
11 |
|
12 |
+
def transcribe(audio_file_mic=None, audio_file_upload=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
if audio_file_mic:
|
14 |
audio_file = audio_file_mic
|
15 |
elif audio_file_upload:
|
|
|
17 |
else:
|
18 |
return "Please upload an audio file or record one"
|
19 |
|
20 |
+
# Load the audio file
|
21 |
+
speech, sample_rate = librosa.load(audio_file, sr=16000, mono=True)
|
22 |
+
|
23 |
+
# Process the audio and perform transcription
|
24 |
+
speech_tensor = torch.tensor([speech])
|
25 |
+
with torch.no_grad():
|
26 |
+
transcription, translation = model({"audio": speech_tensor})
|
27 |
+
|
28 |
return transcription, translation
|
29 |
|
30 |
description = '''Luganda to English Speech Translation'''
|
31 |
|
32 |
+
iface = gr.Interface(
|
33 |
+
fn=transcribe,
|
34 |
+
inputs=[
|
35 |
+
gr.Audio(source="microphone", type="filepath", label="Record Audio"),
|
36 |
+
gr.Audio(source="upload", type="filepath", label="Upload Audio")
|
37 |
+
],
|
38 |
+
outputs=[
|
39 |
+
gr.Textbox(label="Transcription"),
|
40 |
+
gr.Textbox(label="Translation")
|
41 |
+
],
|
42 |
+
description=description
|
43 |
+
)
|
44 |
iface.launch()
|