|
""" Model creation / weight loading / state_dict helpers |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import logging |
|
import math |
|
import os |
|
from collections import OrderedDict |
|
from copy import deepcopy |
|
from typing import Callable |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.utils.model_zoo as model_zoo |
|
|
|
_logger = logging.getLogger(__name__) |
|
|
|
|
|
def load_state_dict(checkpoint_path, use_ema=False): |
|
if checkpoint_path and os.path.isfile(checkpoint_path): |
|
checkpoint = torch.load(checkpoint_path, map_location="cpu") |
|
state_dict_key = "state_dict" |
|
if isinstance(checkpoint, dict): |
|
if use_ema and "state_dict_ema" in checkpoint: |
|
state_dict_key = "state_dict_ema" |
|
if state_dict_key and state_dict_key in checkpoint: |
|
new_state_dict = OrderedDict() |
|
for k, v in checkpoint[state_dict_key].items(): |
|
|
|
name = k[7:] if k.startswith("module") else k |
|
new_state_dict[name] = v |
|
state_dict = new_state_dict |
|
else: |
|
state_dict = checkpoint |
|
_logger.info( |
|
"Loaded {} from checkpoint '{}'".format(state_dict_key, checkpoint_path) |
|
) |
|
return state_dict |
|
else: |
|
_logger.error("No checkpoint found at '{}'".format(checkpoint_path)) |
|
raise FileNotFoundError() |
|
|
|
|
|
def load_checkpoint(model, checkpoint_path, use_ema=False, strict=True): |
|
state_dict = load_state_dict(checkpoint_path, use_ema) |
|
model.load_state_dict(state_dict, strict=strict) |
|
|
|
|
|
def resume_checkpoint( |
|
model, checkpoint_path, optimizer=None, loss_scaler=None, log_info=True |
|
): |
|
resume_epoch = None |
|
if os.path.isfile(checkpoint_path): |
|
checkpoint = torch.load(checkpoint_path, map_location="cpu") |
|
if isinstance(checkpoint, dict) and "state_dict" in checkpoint: |
|
if log_info: |
|
_logger.info("Restoring model state from checkpoint...") |
|
new_state_dict = OrderedDict() |
|
for k, v in checkpoint["state_dict"].items(): |
|
name = k[7:] if k.startswith("module") else k |
|
new_state_dict[name] = v |
|
model.load_state_dict(new_state_dict) |
|
|
|
if optimizer is not None and "optimizer" in checkpoint: |
|
if log_info: |
|
_logger.info("Restoring optimizer state from checkpoint...") |
|
optimizer.load_state_dict(checkpoint["optimizer"]) |
|
|
|
if loss_scaler is not None and loss_scaler.state_dict_key in checkpoint: |
|
if log_info: |
|
_logger.info("Restoring AMP loss scaler state from checkpoint...") |
|
loss_scaler.load_state_dict(checkpoint[loss_scaler.state_dict_key]) |
|
|
|
if "epoch" in checkpoint: |
|
resume_epoch = checkpoint["epoch"] |
|
if "version" in checkpoint and checkpoint["version"] > 1: |
|
resume_epoch += 1 |
|
|
|
if log_info: |
|
_logger.info( |
|
"Loaded checkpoint '{}' (epoch {})".format( |
|
checkpoint_path, checkpoint["epoch"] |
|
) |
|
) |
|
else: |
|
model.load_state_dict(checkpoint) |
|
if log_info: |
|
_logger.info("Loaded checkpoint '{}'".format(checkpoint_path)) |
|
return resume_epoch |
|
else: |
|
_logger.error("No checkpoint found at '{}'".format(checkpoint_path)) |
|
raise FileNotFoundError() |
|
|
|
|
|
def load_pretrained( |
|
model, cfg=None, num_classes=1000, in_chans=3, filter_fn=None, strict=True |
|
): |
|
if cfg is None: |
|
cfg = getattr(model, "default_cfg") |
|
if cfg is None or "url" not in cfg or not cfg["url"]: |
|
_logger.warning("Pretrained model URL is invalid, using random initialization.") |
|
return |
|
|
|
state_dict = model_zoo.load_url(cfg["url"], progress=False, map_location="cpu") |
|
|
|
if filter_fn is not None: |
|
state_dict = filter_fn(state_dict) |
|
|
|
if in_chans == 1: |
|
conv1_name = cfg["first_conv"] |
|
_logger.info( |
|
"Converting first conv (%s) pretrained weights from 3 to 1 channel" |
|
% conv1_name |
|
) |
|
conv1_weight = state_dict[conv1_name + ".weight"] |
|
|
|
conv1_type = conv1_weight.dtype |
|
conv1_weight = conv1_weight.float() |
|
O, I, J, K = conv1_weight.shape |
|
if I > 3: |
|
assert conv1_weight.shape[1] % 3 == 0 |
|
|
|
conv1_weight = conv1_weight.reshape(O, I // 3, 3, J, K) |
|
conv1_weight = conv1_weight.sum(dim=2, keepdim=False) |
|
else: |
|
conv1_weight = conv1_weight.sum(dim=1, keepdim=True) |
|
conv1_weight = conv1_weight.to(conv1_type) |
|
state_dict[conv1_name + ".weight"] = conv1_weight |
|
elif in_chans != 3: |
|
conv1_name = cfg["first_conv"] |
|
conv1_weight = state_dict[conv1_name + ".weight"] |
|
conv1_type = conv1_weight.dtype |
|
conv1_weight = conv1_weight.float() |
|
O, I, J, K = conv1_weight.shape |
|
if I != 3: |
|
_logger.warning( |
|
"Deleting first conv (%s) from pretrained weights." % conv1_name |
|
) |
|
del state_dict[conv1_name + ".weight"] |
|
strict = False |
|
else: |
|
|
|
|
|
_logger.info( |
|
"Repeating first conv (%s) weights in channel dim." % conv1_name |
|
) |
|
repeat = int(math.ceil(in_chans / 3)) |
|
conv1_weight = conv1_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :] |
|
conv1_weight *= 3 / float(in_chans) |
|
conv1_weight = conv1_weight.to(conv1_type) |
|
state_dict[conv1_name + ".weight"] = conv1_weight |
|
|
|
classifier_name = cfg["classifier"] |
|
if num_classes == 1000 and cfg["num_classes"] == 1001: |
|
|
|
classifier_weight = state_dict[classifier_name + ".weight"] |
|
state_dict[classifier_name + ".weight"] = classifier_weight[1:] |
|
classifier_bias = state_dict[classifier_name + ".bias"] |
|
state_dict[classifier_name + ".bias"] = classifier_bias[1:] |
|
elif num_classes != cfg["num_classes"]: |
|
|
|
del state_dict[classifier_name + ".weight"] |
|
del state_dict[classifier_name + ".bias"] |
|
strict = False |
|
|
|
model.load_state_dict(state_dict, strict=strict) |
|
|
|
|
|
def extract_layer(model, layer): |
|
layer = layer.split(".") |
|
module = model |
|
if hasattr(model, "module") and layer[0] != "module": |
|
module = model.module |
|
if not hasattr(model, "module") and layer[0] == "module": |
|
layer = layer[1:] |
|
for l in layer: |
|
if hasattr(module, l): |
|
if not l.isdigit(): |
|
module = getattr(module, l) |
|
else: |
|
module = module[int(l)] |
|
else: |
|
return module |
|
return module |
|
|
|
|
|
def set_layer(model, layer, val): |
|
layer = layer.split(".") |
|
module = model |
|
if hasattr(model, "module") and layer[0] != "module": |
|
module = model.module |
|
lst_index = 0 |
|
module2 = module |
|
for l in layer: |
|
if hasattr(module2, l): |
|
if not l.isdigit(): |
|
module2 = getattr(module2, l) |
|
else: |
|
module2 = module2[int(l)] |
|
lst_index += 1 |
|
lst_index -= 1 |
|
for l in layer[:lst_index]: |
|
if not l.isdigit(): |
|
module = getattr(module, l) |
|
else: |
|
module = module[int(l)] |
|
l = layer[lst_index] |
|
setattr(module, l, val) |
|
|
|
|
|
def adapt_model_from_string(parent_module, model_string): |
|
separator = "***" |
|
state_dict = {} |
|
lst_shape = model_string.split(separator) |
|
for k in lst_shape: |
|
k = k.split(":") |
|
key = k[0] |
|
shape = k[1][1:-1].split(",") |
|
if shape[0] != "": |
|
state_dict[key] = [int(i) for i in shape] |
|
|
|
new_module = deepcopy(parent_module) |
|
for n, m in parent_module.named_modules(): |
|
old_module = extract_layer(parent_module, n) |
|
if isinstance(old_module, nn.Conv2d) or isinstance(old_module, Conv2dSame): |
|
if isinstance(old_module, Conv2dSame): |
|
conv = Conv2dSame |
|
else: |
|
conv = nn.Conv2d |
|
s = state_dict[n + ".weight"] |
|
in_channels = s[1] |
|
out_channels = s[0] |
|
g = 1 |
|
if old_module.groups > 1: |
|
in_channels = out_channels |
|
g = in_channels |
|
new_conv = conv( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=old_module.kernel_size, |
|
bias=old_module.bias is not None, |
|
padding=old_module.padding, |
|
dilation=old_module.dilation, |
|
groups=g, |
|
stride=old_module.stride, |
|
) |
|
set_layer(new_module, n, new_conv) |
|
if isinstance(old_module, nn.BatchNorm2d): |
|
new_bn = nn.BatchNorm2d( |
|
num_features=state_dict[n + ".weight"][0], |
|
eps=old_module.eps, |
|
momentum=old_module.momentum, |
|
affine=old_module.affine, |
|
track_running_stats=True, |
|
) |
|
set_layer(new_module, n, new_bn) |
|
if isinstance(old_module, nn.Linear): |
|
|
|
num_features = state_dict[n + ".weight"][1] |
|
new_fc = nn.Linear( |
|
in_features=num_features, |
|
out_features=old_module.out_features, |
|
bias=old_module.bias is not None, |
|
) |
|
set_layer(new_module, n, new_fc) |
|
if hasattr(new_module, "num_features"): |
|
new_module.num_features = num_features |
|
new_module.eval() |
|
parent_module.eval() |
|
|
|
return new_module |
|
|
|
|
|
def adapt_model_from_file(parent_module, model_variant): |
|
adapt_file = os.path.join( |
|
os.path.dirname(__file__), "pruned", model_variant + ".txt" |
|
) |
|
with open(adapt_file, "r") as f: |
|
return adapt_model_from_string(parent_module, f.read().strip()) |
|
|
|
|
|
def build_model_with_cfg( |
|
model_cls: Callable, |
|
variant: str, |
|
pretrained: bool, |
|
default_cfg: dict, |
|
model_cfg: dict = None, |
|
feature_cfg: dict = None, |
|
pretrained_strict: bool = True, |
|
pretrained_filter_fn: Callable = None, |
|
**kwargs, |
|
): |
|
pruned = kwargs.pop("pruned", False) |
|
features = False |
|
feature_cfg = feature_cfg or {} |
|
|
|
if kwargs.pop("features_only", False): |
|
features = True |
|
feature_cfg.setdefault("out_indices", (0, 1, 2, 3, 4)) |
|
if "out_indices" in kwargs: |
|
feature_cfg["out_indices"] = kwargs.pop("out_indices") |
|
|
|
model = ( |
|
model_cls(**kwargs) if model_cfg is None else model_cls(cfg=model_cfg, **kwargs) |
|
) |
|
model.default_cfg = deepcopy(default_cfg) |
|
|
|
if pruned: |
|
model = adapt_model_from_file(model, variant) |
|
|
|
if pretrained: |
|
load_pretrained( |
|
model, |
|
num_classes=kwargs.get("num_classes", 0), |
|
in_chans=kwargs.get("in_chans", 3), |
|
filter_fn=pretrained_filter_fn, |
|
strict=pretrained_strict, |
|
) |
|
|
|
if features: |
|
feature_cls = FeatureListNet |
|
if "feature_cls" in feature_cfg: |
|
feature_cls = feature_cfg.pop("feature_cls") |
|
if isinstance(feature_cls, str): |
|
feature_cls = feature_cls.lower() |
|
if "hook" in feature_cls: |
|
feature_cls = FeatureHookNet |
|
else: |
|
assert False, f"Unknown feature class {feature_cls}" |
|
model = feature_cls(model, **feature_cfg) |
|
|
|
return model |
|
|