|
""" Vision Transformer (ViT) in PyTorch |
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import torch |
|
import torch.nn as nn |
|
from baselines.ViT.helpers import load_pretrained |
|
from baselines.ViT.layer_helpers import to_2tuple |
|
from baselines.ViT.weight_init import trunc_normal_ |
|
from einops import rearrange |
|
from modules.layers_ours import * |
|
|
|
|
|
def _cfg(url="", **kwargs): |
|
return { |
|
"url": url, |
|
"num_classes": 1000, |
|
"input_size": (3, 224, 224), |
|
"pool_size": None, |
|
"crop_pct": 0.9, |
|
"interpolation": "bicubic", |
|
"first_conv": "patch_embed.proj", |
|
"classifier": "head", |
|
**kwargs, |
|
} |
|
|
|
|
|
default_cfgs = { |
|
|
|
"vit_small_patch16_224": _cfg( |
|
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth", |
|
), |
|
"vit_base_patch16_224": _cfg( |
|
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth", |
|
mean=(0.5, 0.5, 0.5), |
|
std=(0.5, 0.5, 0.5), |
|
), |
|
"vit_large_patch16_224": _cfg( |
|
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth", |
|
mean=(0.5, 0.5, 0.5), |
|
std=(0.5, 0.5, 0.5), |
|
), |
|
} |
|
|
|
|
|
def compute_rollout_attention(all_layer_matrices, start_layer=0): |
|
|
|
num_tokens = all_layer_matrices[0].shape[1] |
|
batch_size = all_layer_matrices[0].shape[0] |
|
eye = ( |
|
torch.eye(num_tokens) |
|
.expand(batch_size, num_tokens, num_tokens) |
|
.to(all_layer_matrices[0].device) |
|
) |
|
all_layer_matrices = [ |
|
all_layer_matrices[i] + eye for i in range(len(all_layer_matrices)) |
|
] |
|
|
|
|
|
joint_attention = all_layer_matrices[start_layer] |
|
for i in range(start_layer + 1, len(all_layer_matrices)): |
|
joint_attention = all_layer_matrices[i].bmm(joint_attention) |
|
return joint_attention |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, drop=0.0): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = Linear(in_features, hidden_features) |
|
self.act = GELU() |
|
self.fc2 = Linear(hidden_features, out_features) |
|
self.drop = Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
def relprop(self, cam, **kwargs): |
|
cam = self.drop.relprop(cam, **kwargs) |
|
cam = self.fc2.relprop(cam, **kwargs) |
|
cam = self.act.relprop(cam, **kwargs) |
|
cam = self.fc1.relprop(cam, **kwargs) |
|
return cam |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.scale = head_dim**-0.5 |
|
|
|
|
|
self.matmul1 = einsum("bhid,bhjd->bhij") |
|
|
|
self.matmul2 = einsum("bhij,bhjd->bhid") |
|
|
|
self.qkv = Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = Dropout(attn_drop) |
|
self.proj = Linear(dim, dim) |
|
self.proj_drop = Dropout(proj_drop) |
|
self.softmax = Softmax(dim=-1) |
|
|
|
self.attn_cam = None |
|
self.attn = None |
|
self.v = None |
|
self.v_cam = None |
|
self.attn_gradients = None |
|
|
|
def get_attn(self): |
|
return self.attn |
|
|
|
def save_attn(self, attn): |
|
self.attn = attn |
|
|
|
def save_attn_cam(self, cam): |
|
self.attn_cam = cam |
|
|
|
def get_attn_cam(self): |
|
return self.attn_cam |
|
|
|
def get_v(self): |
|
return self.v |
|
|
|
def save_v(self, v): |
|
self.v = v |
|
|
|
def save_v_cam(self, cam): |
|
self.v_cam = cam |
|
|
|
def get_v_cam(self): |
|
return self.v_cam |
|
|
|
def save_attn_gradients(self, attn_gradients): |
|
self.attn_gradients = attn_gradients |
|
|
|
def get_attn_gradients(self): |
|
return self.attn_gradients |
|
|
|
def forward(self, x): |
|
b, n, _, h = *x.shape, self.num_heads |
|
qkv = self.qkv(x) |
|
q, k, v = rearrange(qkv, "b n (qkv h d) -> qkv b h n d", qkv=3, h=h) |
|
|
|
self.save_v(v) |
|
|
|
dots = self.matmul1([q, k]) * self.scale |
|
|
|
attn = self.softmax(dots) |
|
attn = self.attn_drop(attn) |
|
|
|
self.save_attn(attn) |
|
attn.register_hook(self.save_attn_gradients) |
|
|
|
out = self.matmul2([attn, v]) |
|
out = rearrange(out, "b h n d -> b n (h d)") |
|
|
|
out = self.proj(out) |
|
out = self.proj_drop(out) |
|
return out |
|
|
|
def relprop(self, cam, **kwargs): |
|
cam = self.proj_drop.relprop(cam, **kwargs) |
|
cam = self.proj.relprop(cam, **kwargs) |
|
cam = rearrange(cam, "b n (h d) -> b h n d", h=self.num_heads) |
|
|
|
|
|
(cam1, cam_v) = self.matmul2.relprop(cam, **kwargs) |
|
cam1 /= 2 |
|
cam_v /= 2 |
|
|
|
self.save_v_cam(cam_v) |
|
self.save_attn_cam(cam1) |
|
|
|
cam1 = self.attn_drop.relprop(cam1, **kwargs) |
|
cam1 = self.softmax.relprop(cam1, **kwargs) |
|
|
|
|
|
(cam_q, cam_k) = self.matmul1.relprop(cam1, **kwargs) |
|
cam_q /= 2 |
|
cam_k /= 2 |
|
|
|
cam_qkv = rearrange( |
|
[cam_q, cam_k, cam_v], |
|
"qkv b h n d -> b n (qkv h d)", |
|
qkv=3, |
|
h=self.num_heads, |
|
) |
|
|
|
return self.qkv.relprop(cam_qkv, **kwargs) |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__( |
|
self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, drop=0.0, attn_drop=0.0 |
|
): |
|
super().__init__() |
|
self.norm1 = LayerNorm(dim, eps=1e-6) |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
) |
|
self.norm2 = LayerNorm(dim, eps=1e-6) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, drop=drop) |
|
|
|
self.add1 = Add() |
|
self.add2 = Add() |
|
self.clone1 = Clone() |
|
self.clone2 = Clone() |
|
|
|
def forward(self, x): |
|
x1, x2 = self.clone1(x, 2) |
|
x = self.add1([x1, self.attn(self.norm1(x2))]) |
|
x1, x2 = self.clone2(x, 2) |
|
x = self.add2([x1, self.mlp(self.norm2(x2))]) |
|
return x |
|
|
|
def relprop(self, cam, **kwargs): |
|
(cam1, cam2) = self.add2.relprop(cam, **kwargs) |
|
cam2 = self.mlp.relprop(cam2, **kwargs) |
|
cam2 = self.norm2.relprop(cam2, **kwargs) |
|
cam = self.clone2.relprop((cam1, cam2), **kwargs) |
|
|
|
(cam1, cam2) = self.add1.relprop(cam, **kwargs) |
|
cam2 = self.attn.relprop(cam2, **kwargs) |
|
cam2 = self.norm1.relprop(cam2, **kwargs) |
|
cam = self.clone1.relprop((cam1, cam2), **kwargs) |
|
return cam |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
"""Image to Patch Embedding""" |
|
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.num_patches = num_patches |
|
|
|
self.proj = Conv2d( |
|
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size |
|
) |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
|
|
assert ( |
|
H == self.img_size[0] and W == self.img_size[1] |
|
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
return x |
|
|
|
def relprop(self, cam, **kwargs): |
|
cam = cam.transpose(1, 2) |
|
cam = cam.reshape( |
|
cam.shape[0], |
|
cam.shape[1], |
|
(self.img_size[0] // self.patch_size[0]), |
|
(self.img_size[1] // self.patch_size[1]), |
|
) |
|
return self.proj.relprop(cam, **kwargs) |
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
"""Vision Transformer with support for patch or hybrid CNN input stage""" |
|
|
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
num_classes=1000, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4.0, |
|
qkv_bias=False, |
|
mlp_head=False, |
|
drop_rate=0.0, |
|
attn_drop_rate=0.0, |
|
): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.num_features = ( |
|
self.embed_dim |
|
) = embed_dim |
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
) |
|
num_patches = self.patch_embed.num_patches |
|
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
|
|
self.blocks = nn.ModuleList( |
|
[ |
|
Block( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
) |
|
for i in range(depth) |
|
] |
|
) |
|
|
|
self.norm = LayerNorm(embed_dim) |
|
if mlp_head: |
|
|
|
self.head = Mlp(embed_dim, int(embed_dim * mlp_ratio), num_classes) |
|
else: |
|
|
|
self.head = Linear(embed_dim, num_classes) |
|
|
|
|
|
|
|
trunc_normal_(self.pos_embed, std=0.02) |
|
trunc_normal_(self.cls_token, std=0.02) |
|
self.apply(self._init_weights) |
|
|
|
self.pool = IndexSelect() |
|
self.add = Add() |
|
|
|
self.inp_grad = None |
|
|
|
def save_inp_grad(self, grad): |
|
self.inp_grad = grad |
|
|
|
def get_inp_grad(self): |
|
return self.inp_grad |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@property |
|
def no_weight_decay(self): |
|
return {"pos_embed", "cls_token"} |
|
|
|
def forward(self, x): |
|
B = x.shape[0] |
|
x = self.patch_embed(x) |
|
|
|
cls_tokens = self.cls_token.expand( |
|
B, -1, -1 |
|
) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
x = self.add([x, self.pos_embed]) |
|
|
|
x.register_hook(self.save_inp_grad) |
|
|
|
for blk in self.blocks: |
|
x = blk(x) |
|
|
|
x = self.norm(x) |
|
x = self.pool(x, dim=1, indices=torch.tensor(0, device=x.device)) |
|
x = x.squeeze(1) |
|
x = self.head(x) |
|
return x |
|
|
|
def relprop( |
|
self, |
|
cam=None, |
|
method="transformer_attribution", |
|
is_ablation=False, |
|
start_layer=0, |
|
**kwargs, |
|
): |
|
|
|
|
|
cam = self.head.relprop(cam, **kwargs) |
|
cam = cam.unsqueeze(1) |
|
cam = self.pool.relprop(cam, **kwargs) |
|
cam = self.norm.relprop(cam, **kwargs) |
|
for blk in reversed(self.blocks): |
|
cam = blk.relprop(cam, **kwargs) |
|
|
|
|
|
|
|
|
|
if method == "full": |
|
(cam, _) = self.add.relprop(cam, **kwargs) |
|
cam = cam[:, 1:] |
|
cam = self.patch_embed.relprop(cam, **kwargs) |
|
|
|
cam = cam.sum(dim=1) |
|
return cam |
|
|
|
elif method == "rollout": |
|
|
|
attn_cams = [] |
|
for blk in self.blocks: |
|
attn_heads = blk.attn.get_attn_cam().clamp(min=0) |
|
avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach() |
|
attn_cams.append(avg_heads) |
|
cam = compute_rollout_attention(attn_cams, start_layer=start_layer) |
|
cam = cam[:, 0, 1:] |
|
return cam |
|
|
|
|
|
elif method == "transformer_attribution" or method == "grad": |
|
cams = [] |
|
for blk in self.blocks: |
|
grad = blk.attn.get_attn_gradients() |
|
cam = blk.attn.get_attn_cam() |
|
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) |
|
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) |
|
cam = grad * cam |
|
cam = cam.clamp(min=0).mean(dim=0) |
|
cams.append(cam.unsqueeze(0)) |
|
rollout = compute_rollout_attention(cams, start_layer=start_layer) |
|
cam = rollout[:, 0, 1:] |
|
return cam |
|
|
|
elif method == "last_layer": |
|
cam = self.blocks[-1].attn.get_attn_cam() |
|
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) |
|
if is_ablation: |
|
grad = self.blocks[-1].attn.get_attn_gradients() |
|
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) |
|
cam = grad * cam |
|
cam = cam.clamp(min=0).mean(dim=0) |
|
cam = cam[0, 1:] |
|
return cam |
|
|
|
elif method == "last_layer_attn": |
|
cam = self.blocks[-1].attn.get_attn() |
|
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) |
|
cam = cam.clamp(min=0).mean(dim=0) |
|
cam = cam[0, 1:] |
|
return cam |
|
|
|
elif method == "second_layer": |
|
cam = self.blocks[1].attn.get_attn_cam() |
|
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) |
|
if is_ablation: |
|
grad = self.blocks[1].attn.get_attn_gradients() |
|
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) |
|
cam = grad * cam |
|
cam = cam.clamp(min=0).mean(dim=0) |
|
cam = cam[0, 1:] |
|
return cam |
|
|
|
|
|
def _conv_filter(state_dict, patch_size=16): |
|
"""convert patch embedding weight from manual patchify + linear proj to conv""" |
|
out_dict = {} |
|
for k, v in state_dict.items(): |
|
if "patch_embed.proj.weight" in k: |
|
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) |
|
out_dict[k] = v |
|
return out_dict |
|
|
|
|
|
def vit_base_patch16_224(pretrained=False, **kwargs): |
|
model = VisionTransformer( |
|
patch_size=16, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
**kwargs, |
|
) |
|
model.default_cfg = default_cfgs["vit_base_patch16_224"] |
|
if pretrained: |
|
load_pretrained( |
|
model, |
|
num_classes=model.num_classes, |
|
in_chans=kwargs.get("in_chans", 3), |
|
filter_fn=_conv_filter, |
|
) |
|
return model |
|
|
|
|
|
def vit_large_patch16_224(pretrained=False, **kwargs): |
|
model = VisionTransformer( |
|
patch_size=16, |
|
embed_dim=1024, |
|
depth=24, |
|
num_heads=16, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
**kwargs, |
|
) |
|
model.default_cfg = default_cfgs["vit_large_patch16_224"] |
|
if pretrained: |
|
load_pretrained( |
|
model, num_classes=model.num_classes, in_chans=kwargs.get("in_chans", 3) |
|
) |
|
return model |
|
|
|
|
|
def deit_base_patch16_224(pretrained=False, **kwargs): |
|
model = VisionTransformer( |
|
patch_size=16, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
**kwargs, |
|
) |
|
model.default_cfg = _cfg() |
|
if pretrained: |
|
checkpoint = torch.hub.load_state_dict_from_url( |
|
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth", |
|
map_location="cpu", |
|
check_hash=True, |
|
) |
|
model.load_state_dict(checkpoint["model"]) |
|
return model |
|
|