File size: 8,249 Bytes
c4b2b37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import argparse
import os

import h5py
# Import saliency methods and models
from misc_functions import *
from torchvision.datasets import ImageNet
from tqdm import tqdm
from ViT_explanation_generator import LRP, Baselines
from ViT_LRP import vit_base_patch16_224 as vit_LRP
from ViT_new import vit_base_patch16_224
from ViT_orig_LRP import vit_base_patch16_224 as vit_orig_LRP


def normalize(tensor, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]):
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
    tensor.sub_(mean[None, :, None, None]).div_(std[None, :, None, None])
    return tensor


def compute_saliency_and_save(args):
    first = True
    with h5py.File(os.path.join(args.method_dir, "results.hdf5"), "a") as f:
        data_cam = f.create_dataset(
            "vis",
            (1, 1, 224, 224),
            maxshape=(None, 1, 224, 224),
            dtype=np.float32,
            compression="gzip",
        )
        data_image = f.create_dataset(
            "image",
            (1, 3, 224, 224),
            maxshape=(None, 3, 224, 224),
            dtype=np.float32,
            compression="gzip",
        )
        data_target = f.create_dataset(
            "target", (1,), maxshape=(None,), dtype=np.int32, compression="gzip"
        )
        for batch_idx, (data, target) in enumerate(tqdm(sample_loader)):
            if first:
                first = False
                data_cam.resize(data_cam.shape[0] + data.shape[0] - 1, axis=0)
                data_image.resize(data_image.shape[0] + data.shape[0] - 1, axis=0)
                data_target.resize(data_target.shape[0] + data.shape[0] - 1, axis=0)
            else:
                data_cam.resize(data_cam.shape[0] + data.shape[0], axis=0)
                data_image.resize(data_image.shape[0] + data.shape[0], axis=0)
                data_target.resize(data_target.shape[0] + data.shape[0], axis=0)

            # Add data
            data_image[-data.shape[0] :] = data.data.cpu().numpy()
            data_target[-data.shape[0] :] = target.data.cpu().numpy()

            target = target.to(device)

            data = normalize(data)
            data = data.to(device)
            data.requires_grad_()

            index = None
            if args.vis_class == "target":
                index = target

            if args.method == "rollout":
                Res = baselines.generate_rollout(data, start_layer=1).reshape(
                    data.shape[0], 1, 14, 14
                )
                # Res = Res - Res.mean()

            elif args.method == "lrp":
                Res = lrp.generate_LRP(data, start_layer=1, index=index).reshape(
                    data.shape[0], 1, 14, 14
                )
                # Res = Res - Res.mean()

            elif args.method == "transformer_attribution":
                Res = lrp.generate_LRP(
                    data, start_layer=1, method="grad", index=index
                ).reshape(data.shape[0], 1, 14, 14)
                # Res = Res - Res.mean()

            elif args.method == "full_lrp":
                Res = orig_lrp.generate_LRP(data, method="full", index=index).reshape(
                    data.shape[0], 1, 224, 224
                )
                # Res = Res - Res.mean()

            elif args.method == "lrp_last_layer":
                Res = orig_lrp.generate_LRP(
                    data, method="last_layer", is_ablation=args.is_ablation, index=index
                ).reshape(data.shape[0], 1, 14, 14)
                # Res = Res - Res.mean()

            elif args.method == "attn_last_layer":
                Res = lrp.generate_LRP(
                    data, method="last_layer_attn", is_ablation=args.is_ablation
                ).reshape(data.shape[0], 1, 14, 14)

            elif args.method == "attn_gradcam":
                Res = baselines.generate_cam_attn(data, index=index).reshape(
                    data.shape[0], 1, 14, 14
                )

            if args.method != "full_lrp" and args.method != "input_grads":
                Res = torch.nn.functional.interpolate(
                    Res, scale_factor=16, mode="bilinear"
                ).cuda()
            Res = (Res - Res.min()) / (Res.max() - Res.min())

            data_cam[-data.shape[0] :] = Res.data.cpu().numpy()


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Train a segmentation")
    parser.add_argument("--batch-size", type=int, default=1, help="")
    parser.add_argument(
        "--method",
        type=str,
        default="grad_rollout",
        choices=[
            "rollout",
            "lrp",
            "transformer_attribution",
            "full_lrp",
            "lrp_last_layer",
            "attn_last_layer",
            "attn_gradcam",
        ],
        help="",
    )
    parser.add_argument("--lmd", type=float, default=10, help="")
    parser.add_argument(
        "--vis-class",
        type=str,
        default="top",
        choices=["top", "target", "index"],
        help="",
    )
    parser.add_argument("--class-id", type=int, default=0, help="")
    parser.add_argument("--cls-agn", action="store_true", default=False, help="")
    parser.add_argument("--no-ia", action="store_true", default=False, help="")
    parser.add_argument("--no-fx", action="store_true", default=False, help="")
    parser.add_argument("--no-fgx", action="store_true", default=False, help="")
    parser.add_argument("--no-m", action="store_true", default=False, help="")
    parser.add_argument("--no-reg", action="store_true", default=False, help="")
    parser.add_argument("--is-ablation", type=bool, default=False, help="")
    parser.add_argument("--imagenet-validation-path", type=str, required=True, help="")
    args = parser.parse_args()

    # PATH variables
    PATH = os.path.dirname(os.path.abspath(__file__)) + "/"
    os.makedirs(os.path.join(PATH, "visualizations"), exist_ok=True)

    try:
        os.remove(
            os.path.join(
                PATH,
                "visualizations/{}/{}/results.hdf5".format(args.method, args.vis_class),
            )
        )
    except OSError:
        pass

    os.makedirs(
        os.path.join(PATH, "visualizations/{}".format(args.method)), exist_ok=True
    )
    if args.vis_class == "index":
        os.makedirs(
            os.path.join(
                PATH,
                "visualizations/{}/{}_{}".format(
                    args.method, args.vis_class, args.class_id
                ),
            ),
            exist_ok=True,
        )
        args.method_dir = os.path.join(
            PATH,
            "visualizations/{}/{}_{}".format(
                args.method, args.vis_class, args.class_id
            ),
        )
    else:
        ablation_fold = "ablation" if args.is_ablation else "not_ablation"
        os.makedirs(
            os.path.join(
                PATH,
                "visualizations/{}/{}/{}".format(
                    args.method, args.vis_class, ablation_fold
                ),
            ),
            exist_ok=True,
        )
        args.method_dir = os.path.join(
            PATH,
            "visualizations/{}/{}/{}".format(
                args.method, args.vis_class, ablation_fold
            ),
        )

    cuda = torch.cuda.is_available()
    device = torch.device("cuda" if cuda else "cpu")

    # Model
    model = vit_base_patch16_224(pretrained=True).cuda()
    baselines = Baselines(model)

    # LRP
    model_LRP = vit_LRP(pretrained=True).cuda()
    model_LRP.eval()
    lrp = LRP(model_LRP)

    # orig LRP
    model_orig_LRP = vit_orig_LRP(pretrained=True).cuda()
    model_orig_LRP.eval()
    orig_lrp = LRP(model_orig_LRP)

    # Dataset loader for sample images
    transform = transforms.Compose(
        [
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
        ]
    )

    imagenet_ds = ImageNet(
        args.imagenet_validation_path, split="val", download=False, transform=transform
    )
    sample_loader = torch.utils.data.DataLoader(
        imagenet_ds, batch_size=args.batch_size, shuffle=False, num_workers=4
    )

    compute_saliency_and_save(args)