File size: 16,148 Bytes
c4b2b37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
""" Vision Transformer (ViT) in PyTorch
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
import torch.nn as nn
from baselines.ViT.helpers import load_pretrained
from baselines.ViT.layer_helpers import to_2tuple
from baselines.ViT.weight_init import trunc_normal_
from einops import rearrange
from modules.layers_lrp import *


def _cfg(url="", **kwargs):
    return {
        "url": url,
        "num_classes": 1000,
        "input_size": (3, 224, 224),
        "pool_size": None,
        "crop_pct": 0.9,
        "interpolation": "bicubic",
        "first_conv": "patch_embed.proj",
        "classifier": "head",
        **kwargs,
    }


default_cfgs = {
    # patch models
    "vit_small_patch16_224": _cfg(
        url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth",
    ),
    "vit_base_patch16_224": _cfg(
        url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth",
        mean=(0.5, 0.5, 0.5),
        std=(0.5, 0.5, 0.5),
    ),
    "vit_large_patch16_224": _cfg(
        url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth",
        mean=(0.5, 0.5, 0.5),
        std=(0.5, 0.5, 0.5),
    ),
}


def compute_rollout_attention(all_layer_matrices, start_layer=0):
    # adding residual consideration
    num_tokens = all_layer_matrices[0].shape[1]
    batch_size = all_layer_matrices[0].shape[0]
    eye = (
        torch.eye(num_tokens)
        .expand(batch_size, num_tokens, num_tokens)
        .to(all_layer_matrices[0].device)
    )
    all_layer_matrices = [
        all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))
    ]
    # all_layer_matrices = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
    #                       for i in range(len(all_layer_matrices))]
    joint_attention = all_layer_matrices[start_layer]
    for i in range(start_layer + 1, len(all_layer_matrices)):
        joint_attention = all_layer_matrices[i].bmm(joint_attention)
    return joint_attention


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, drop=0.0):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = Linear(in_features, hidden_features)
        self.act = GELU()
        self.fc2 = Linear(hidden_features, out_features)
        self.drop = Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

    def relprop(self, cam, **kwargs):
        cam = self.drop.relprop(cam, **kwargs)
        cam = self.fc2.relprop(cam, **kwargs)
        cam = self.act.relprop(cam, **kwargs)
        cam = self.fc1.relprop(cam, **kwargs)
        return cam


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = head_dim**-0.5

        # A = Q*K^T
        self.matmul1 = einsum("bhid,bhjd->bhij")
        # attn = A*V
        self.matmul2 = einsum("bhij,bhjd->bhid")

        self.qkv = Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = Dropout(attn_drop)
        self.proj = Linear(dim, dim)
        self.proj_drop = Dropout(proj_drop)
        self.softmax = Softmax(dim=-1)

        self.attn_cam = None
        self.attn = None
        self.v = None
        self.v_cam = None
        self.attn_gradients = None

    def get_attn(self):
        return self.attn

    def save_attn(self, attn):
        self.attn = attn

    def save_attn_cam(self, cam):
        self.attn_cam = cam

    def get_attn_cam(self):
        return self.attn_cam

    def get_v(self):
        return self.v

    def save_v(self, v):
        self.v = v

    def save_v_cam(self, cam):
        self.v_cam = cam

    def get_v_cam(self):
        return self.v_cam

    def save_attn_gradients(self, attn_gradients):
        self.attn_gradients = attn_gradients

    def get_attn_gradients(self):
        return self.attn_gradients

    def forward(self, x):
        b, n, _, h = *x.shape, self.num_heads
        qkv = self.qkv(x)
        q, k, v = rearrange(qkv, "b n (qkv h d) -> qkv b h n d", qkv=3, h=h)

        self.save_v(v)

        dots = self.matmul1([q, k]) * self.scale

        attn = self.softmax(dots)
        attn = self.attn_drop(attn)

        self.save_attn(attn)
        attn.register_hook(self.save_attn_gradients)

        out = self.matmul2([attn, v])
        out = rearrange(out, "b h n d -> b n (h d)")

        out = self.proj(out)
        out = self.proj_drop(out)
        return out

    def relprop(self, cam, **kwargs):
        cam = self.proj_drop.relprop(cam, **kwargs)
        cam = self.proj.relprop(cam, **kwargs)
        cam = rearrange(cam, "b n (h d) -> b h n d", h=self.num_heads)

        # attn = A*V
        (cam1, cam_v) = self.matmul2.relprop(cam, **kwargs)
        cam1 /= 2
        cam_v /= 2

        self.save_v_cam(cam_v)
        self.save_attn_cam(cam1)

        cam1 = self.attn_drop.relprop(cam1, **kwargs)
        cam1 = self.softmax.relprop(cam1, **kwargs)

        # A = Q*K^T
        (cam_q, cam_k) = self.matmul1.relprop(cam1, **kwargs)
        cam_q /= 2
        cam_k /= 2

        cam_qkv = rearrange(
            [cam_q, cam_k, cam_v],
            "qkv b h n d -> b n (qkv h d)",
            qkv=3,
            h=self.num_heads,
        )

        return self.qkv.relprop(cam_qkv, **kwargs)


class Block(nn.Module):
    def __init__(
        self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, drop=0.0, attn_drop=0.0
    ):
        super().__init__()
        self.norm1 = LayerNorm(dim, eps=1e-6)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=drop,
        )
        self.norm2 = LayerNorm(dim, eps=1e-6)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, drop=drop)

        self.add1 = Add()
        self.add2 = Add()
        self.clone1 = Clone()
        self.clone2 = Clone()

    def forward(self, x):
        x1, x2 = self.clone1(x, 2)
        x = self.add1([x1, self.attn(self.norm1(x2))])
        x1, x2 = self.clone2(x, 2)
        x = self.add2([x1, self.mlp(self.norm2(x2))])
        return x

    def relprop(self, cam, **kwargs):
        (cam1, cam2) = self.add2.relprop(cam, **kwargs)
        cam2 = self.mlp.relprop(cam2, **kwargs)
        cam2 = self.norm2.relprop(cam2, **kwargs)
        cam = self.clone2.relprop((cam1, cam2), **kwargs)

        (cam1, cam2) = self.add1.relprop(cam, **kwargs)
        cam2 = self.attn.relprop(cam2, **kwargs)
        cam2 = self.norm1.relprop(cam2, **kwargs)
        cam = self.clone1.relprop((cam1, cam2), **kwargs)
        return cam


class PatchEmbed(nn.Module):
    """Image to Patch Embedding"""

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = Conv2d(
            in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
        )

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert (
            H == self.img_size[0] and W == self.img_size[1]
        ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose(1, 2)
        return x

    def relprop(self, cam, **kwargs):
        cam = cam.transpose(1, 2)
        cam = cam.reshape(
            cam.shape[0],
            cam.shape[1],
            (self.img_size[0] // self.patch_size[0]),
            (self.img_size[1] // self.patch_size[1]),
        )
        return self.proj.relprop(cam, **kwargs)


class VisionTransformer(nn.Module):
    """Vision Transformer with support for patch or hybrid CNN input stage"""

    def __init__(
        self,
        img_size=224,
        patch_size=16,
        in_chans=3,
        num_classes=1000,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4.0,
        qkv_bias=False,
        mlp_head=False,
        drop_rate=0.0,
        attn_drop_rate=0.0,
    ):
        super().__init__()
        self.num_classes = num_classes
        self.num_features = (
            self.embed_dim
        ) = embed_dim  # num_features for consistency with other models
        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
        )
        num_patches = self.patch_embed.num_patches

        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))

        self.blocks = nn.ModuleList(
            [
                Block(
                    dim=embed_dim,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    drop=drop_rate,
                    attn_drop=attn_drop_rate,
                )
                for i in range(depth)
            ]
        )

        self.norm = LayerNorm(embed_dim)
        if mlp_head:
            # paper diagram suggests 'MLP head', but results in 4M extra parameters vs paper
            self.head = Mlp(embed_dim, int(embed_dim * mlp_ratio), num_classes)
        else:
            # with a single Linear layer as head, the param count within rounding of paper
            self.head = Linear(embed_dim, num_classes)

        # FIXME not quite sure what the proper weight init is supposed to be,
        # normal / trunc normal w/ std == .02 similar to other Bert like transformers
        trunc_normal_(self.pos_embed, std=0.02)  # embeddings same as weights?
        trunc_normal_(self.cls_token, std=0.02)
        self.apply(self._init_weights)

        self.pool = IndexSelect()
        self.add = Add()

        self.inp_grad = None

    def save_inp_grad(self, grad):
        self.inp_grad = grad

    def get_inp_grad(self):
        return self.inp_grad

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @property
    def no_weight_decay(self):
        return {"pos_embed", "cls_token"}

    def forward(self, x):
        B = x.shape[0]
        x = self.patch_embed(x)

        cls_tokens = self.cls_token.expand(
            B, -1, -1
        )  # stole cls_tokens impl from Phil Wang, thanks
        x = torch.cat((cls_tokens, x), dim=1)
        x = self.add([x, self.pos_embed])

        x.register_hook(self.save_inp_grad)

        for blk in self.blocks:
            x = blk(x)

        x = self.norm(x)
        x = self.pool(x, dim=1, indices=torch.tensor(0, device=x.device))
        x = x.squeeze(1)
        x = self.head(x)
        return x

    def relprop(
        self, cam=None, method="grad", is_ablation=False, start_layer=0, **kwargs
    ):
        # print(kwargs)
        # print("conservation 1", cam.sum())
        cam = self.head.relprop(cam, **kwargs)
        cam = cam.unsqueeze(1)
        cam = self.pool.relprop(cam, **kwargs)
        cam = self.norm.relprop(cam, **kwargs)
        for blk in reversed(self.blocks):
            cam = blk.relprop(cam, **kwargs)

        # print("conservation 2", cam.sum())
        # print("min", cam.min())

        if method == "full":
            (cam, _) = self.add.relprop(cam, **kwargs)
            cam = cam[:, 1:]
            cam = self.patch_embed.relprop(cam, **kwargs)
            # sum on channels
            cam = cam.sum(dim=1)
            return cam

        elif method == "rollout":
            # cam rollout
            attn_cams = []
            for blk in self.blocks:
                attn_heads = blk.attn.get_attn_cam().clamp(min=0)
                avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach()
                attn_cams.append(avg_heads)
            cam = compute_rollout_attention(attn_cams, start_layer=start_layer)
            cam = cam[:, 0, 1:]
            return cam

        elif method == "grad":
            cams = []
            for blk in self.blocks:
                grad = blk.attn.get_attn_gradients()
                cam = blk.attn.get_attn_cam()
                cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
                grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
                cam = grad * cam
                cam = cam.clamp(min=0).mean(dim=0)
                cams.append(cam.unsqueeze(0))
            rollout = compute_rollout_attention(cams, start_layer=start_layer)
            cam = rollout[:, 0, 1:]
            return cam

        elif method == "last_layer":
            cam = self.blocks[-1].attn.get_attn_cam()
            cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
            if is_ablation:
                grad = self.blocks[-1].attn.get_attn_gradients()
                grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
                cam = grad * cam
            cam = cam.clamp(min=0).mean(dim=0)
            cam = cam[0, 1:]
            return cam

        elif method == "last_layer_attn":
            cam = self.blocks[-1].attn.get_attn()
            cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
            cam = cam.clamp(min=0).mean(dim=0)
            cam = cam[0, 1:]
            return cam

        elif method == "second_layer":
            cam = self.blocks[1].attn.get_attn_cam()
            cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
            if is_ablation:
                grad = self.blocks[1].attn.get_attn_gradients()
                grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
                cam = grad * cam
            cam = cam.clamp(min=0).mean(dim=0)
            cam = cam[0, 1:]
            return cam


def _conv_filter(state_dict, patch_size=16):
    """convert patch embedding weight from manual patchify + linear proj to conv"""
    out_dict = {}
    for k, v in state_dict.items():
        if "patch_embed.proj.weight" in k:
            v = v.reshape((v.shape[0], 3, patch_size, patch_size))
        out_dict[k] = v
    return out_dict


def vit_base_patch16_224(pretrained=False, **kwargs):
    model = VisionTransformer(
        patch_size=16,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4,
        qkv_bias=True,
        **kwargs,
    )
    model.default_cfg = default_cfgs["vit_base_patch16_224"]
    if pretrained:
        load_pretrained(
            model,
            num_classes=model.num_classes,
            in_chans=kwargs.get("in_chans", 3),
            filter_fn=_conv_filter,
        )
    return model


def vit_large_patch16_224(pretrained=False, **kwargs):
    model = VisionTransformer(
        patch_size=16,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        mlp_ratio=4,
        qkv_bias=True,
        **kwargs,
    )
    model.default_cfg = default_cfgs["vit_large_patch16_224"]
    if pretrained:
        load_pretrained(
            model, num_classes=model.num_classes, in_chans=kwargs.get("in_chans", 3)
        )
    return model