NoteAnalyzer / app.py
aliicemill's picture
Update app.py
1eeac42 verified
raw
history blame
24.5 kB
import streamlit as st
import re
import numpy as np
import matplotlib.pyplot as plt
from io import BytesIO
from huggingface_hub import hf_hub_download
def run_turkish():
# Başlık
st.title("Note Analyzer Streamlit Uygulaması")
# Uygulamanın çalışma prensibi görüntüleme durumu
if "show_images" not in st.session_state:
st.session_state.show_images = True # Varsayılan olarak resimler gösterilsin
# Kullanıcıdan veri alma (Sidebar sabit kalıyor)
st.sidebar.header("Girdi Alanları")
text_input = st.sidebar.text_area("Notları Yapıştırın", height=200)
# Diğer parametreler
lecture_name = st.sidebar.text_input("Ders Adı", value="Ders Adı")
perfect_score = st.sidebar.number_input("Sınav Puanı Üst Limiti", value=100, step=1)
my_note = st.sidebar.number_input("Benim Notum", value=0.0, step=0.1)
note_s_axis_diff = st.sidebar.number_input("X ekseni(notlar) 0'dan başlayıp kaçar kaçar artsın:", value=3, step=1)
amount_s_axis_diff = st.sidebar.number_input("Y ekseni(notların adetleri) 0'dan başlayıp kaçar kaçar artsın:", value=5, step=1)
first_step = st.sidebar.number_input("Txt dosyanızda notların başladığı indeks: ", value=0, step=1)
increase_amount = st.sidebar.number_input("Txt dosyanızda kaç adet başlık(not,isim,numara,doğru,yanlış vs.) var: ", value=1, step=1)
if st.sidebar.button("Analizi Çalıştır"):
# Butona basıldığında resimleri gizle
st.session_state.show_images = False
# Resimler yalnızca show_images True ise gösterilir
if st.session_state.show_images:
# HuggingFace'ten dosya indirme
repo_id = "NoteAnalyzer/turkish" # HuggingFace repo adı
filename = "NoteAnalyzerTurkish.pdf" # İndirilecek dosyanın adı
# Dosyayı indirin
pdf_path = hf_hub_download(repo_id=repo_id, filename=filename)
# Streamlit uygulaması
st.title("NASIL KULLANILIR: ")
# PDF dosyasını iframe ile göster
with open(pdf_path, "rb") as pdf_file:
pdf_data = pdf_file.read()
st.download_button("PDF İndir", data=pdf_data, file_name="NoteAnalyzerTurkish.pdf")
st.markdown(f'<iframe src="data:application/pdf;base64,{pdf_data.hex()}" width="700" height="500"></iframe>', unsafe_allow_html=True)
#akldnaslkdnmllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
# Notları yükleme ve işleme işlemleri (Butona basıldıysa çalışır)
if not st.session_state.show_images:
if input_method == "Dosya Yükle" and uploaded_file is None:
st.error("Lütfen bir dosya yükleyin!")
elif input_method == "Kopyala-Yapıştır" and not text_input:
st.error("Lütfen notları metin kutusuna yapıştırın!")
else:
try:
# Dosya veya metin kutusundan içerik okuma
if uploaded_file:
content = uploaded_file.read().decode("utf-8")
elif text_input:
content = text_input
# Veriyi işleme
content = content.strip()
result = re.split(r'[ \n]+', content)
# Strip fonksiyonu ve kaçış dizisi temizliği
notes_result = [x.strip() for x in result[first_step::increase_amount] if x.strip() != '∅' and x.strip() != "NA"]
notes_result = list(map(lambda x: float(x), notes_result))
notes_result = np.array(notes_result)
# İstatistikler
average_x = np.average(notes_result)
min_x = notes_result.min()
max_x = notes_result.max()
std = np.std(notes_result)
z_score = (my_note - average_x) / std
# İstatistikleri ekrana yazdırma
st.subheader("Genel Bilgiler")
st.write(f"Katilimci Sayısı: {len(notes_result)}")
st.write(f"En Düşük Not: {min_x:.2f}")
st.write(f"En Yüksek Not: {max_x:.2f}")
st.write(f"Ortalama Not: {average_x:.2f}")
st.write(f"Standart Sapma: {std:.2f}")
st.write(f"Z-Skoru: {z_score:.2f}")
# Grafik oluşturma
st.subheader("Not Dağılım Grafiği")
unique_values, counts = np.unique(notes_result, return_counts=True)
plt.figure(figsize=(10, 6),dpi=150)
bars = plt.bar(unique_values, counts, width=0.3)
plt.axvline(x=average_x, color='red', linestyle='--')
plt.text(average_x + 1.5, max(counts), 'Ortalama Not', color='red', rotation=0, ha='center', va='bottom')
if my_note in unique_values:
plt.text(my_note, counts[unique_values == my_note][0], 'Benim\nNotum', color='green', rotation=0, ha='center', va='bottom')
for bar in bars:
if bar.get_x() <= my_note < bar.get_x() + bar.get_width():
bar.set_color('green')
plt.title(f'{lecture_name} Not Sayıları Grafiği')
plt.xlabel('Notlar')
plt.ylabel('Adet')
plt.xticks(range(0, int(perfect_score)+note_s_axis_diff, note_s_axis_diff), rotation=90)
plt.yticks(range(0, max(counts)+amount_s_axis_diff, amount_s_axis_diff), rotation=0)
# Grafik bilgileri
info_text = (
f"Katilimci sayısı: {len(notes_result)}\n"
f"En düşük not: {min_x:.2f}\n"
f"En yüksek not: {max_x:.2f}\n"
f"Benim notum: {my_note:.2f}\n"
f"Ortalama not: {average_x:.2f}\n"
f"Standart sapma: {std:.2f}\n"
f"Z-skoru: {z_score:.2f}"
)
plt.text(
1.05 * max(unique_values), 0.8 * max(counts),
info_text,
fontsize=10,
color="black",
ha="left",
va="top",
bbox=dict(boxstyle="round,pad=0.3", edgecolor="blue", facecolor="lightgrey")
)
plt.subplots_adjust(left=0.055, bottom=0.065, right=0.90, top=0.962, wspace=0.2, hspace=0.2)
# Sağ alt köşeye "Generated by Note Analyzer" metni ekle
plt.text(
0.99, -0.15, # Sağ alt köşeye konumlandır
"Generated by Note Analyzer at HuggingFace aliicemill/NoteAnalyzer space",
fontsize=8,
color="gray",
ha="right",
va="top",
transform=plt.gca().transAxes # Koordinatları grafiğe göre ayarla
)
# Kenar boşluklarını optimize et
plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9)
# Grafik gösterimi
st.pyplot(plt)
# Grafik indirme bağlantısı
buf = BytesIO()
plt.savefig(buf, format="png",bbox_inches='tight')
buf.seek(0)
st.download_button(
label="Grafiği İndir",
data=buf,
file_name="not_dagilimi.png",
mime="image/png"
)
except Exception as e:
st.error(f"Hata: {e}")
# Web sayfasının altına isim ve tarih
st.markdown("---")
st.write("Developed by: Ali Cemil Özdemir")
st.write("Date: 01.12.2024")
st.write("For feedback and suggestions, you can contact me at [email protected]")
# Grafiklerin sağ alt köşesine yazı ekleme
st.markdown("""
<p style="position:absolute; bottom:0px; right:0px; font-size: 12px; color: gray;">
Created with Note Analyzer
</p>
""", unsafe_allow_html=True)
def run_arabic():
# العنوان
st.title("تطبيق محلل الدرجات باستخدام Streamlit")
# حالة عرض الصور
if "show_images" not in st.session_state:
st.session_state.show_images = True # الافتراضي: يتم عرض الصور
# منطقة إدخال البيانات في الشريط الجانبي
st.sidebar.header("حقول الإدخال")
# اختيار رفع ملف أو إدخال النصوص يدويًا
text_input = st.sidebar.text_area("قم بلصق الدرجات هنا", height=200)
# المعلمات الأخرى
lecture_name = st.sidebar.text_input("اسم المادة", value="اسم المادة")
perfect_score = st.sidebar.number_input("الدرجة الكاملة", value=100, step=1)
my_note = st.sidebar.number_input("درجتي", value=0.0, step=0.1)
note_s_axis_diff = st.sidebar.number_input("المحور X (الملاحظات) يبدأ من الصفر ويزداد بالزيادات:", value=3, step=1)
amount_s_axis_diff = st.sidebar.number_input("المحور Y (عدد الدرجات) يبدأ من الصفر ويزداد بأي رقم:", value=5, step=1)
first_step = st.sidebar.number_input("الفهرس الذي تبدأ منه الملاحظات في ملف txt الخاص بك:", value=0, step=1)
increase_amount = st.sidebar.number_input("كم عدد العناوين (ملاحظة، الاسم، الرقم، صحيح، خطأ، وما إلى ذلك) الموجودة في ملف txt الخاص بك:", value=1, step=1)
if st.sidebar.button("تشغيل التحليل"):
# إخفاء الصور عند النقر على الزر
st.session_state.show_images = False
# عرض الصور فقط إذا كانت show_images صحيحة
if st.session_state.show_images:
st.subheader("كيفية عمل التطبيق(ينصح باستخدامه من الكمبيوتر)")
# قائمة بأسماء ملفات الصور بالترتيب
image_files = ["arabic/a.png", "arabic/b.png", "arabic/c.png"]
# عرض الصور واحدة تحت الأخرى
for image_file in image_files:
st.image(image_file, use_container_width=True)
# تحميل ومعالجة الدرجات (يعمل فقط إذا تم النقر على الزر)
if not st.session_state.show_images:
if input_method == "رفع ملف" and uploaded_file is None:
st.error("يرجى رفع ملف!")
elif input_method == "نسخ ولصق" and not text_input:
st.error("يرجى لصق الدرجات في مربع النص!")
else:
try:
# قراءة المحتوى من الملف أو مربع النص
if uploaded_file:
content = uploaded_file.read().decode("utf-8")
elif text_input:
content = text_input
# معالجة البيانات
content = content.strip()
result = re.split(r'[ \n]+', content)
# تنظيف وتصنيف البيانات
notes_result = [x.strip() for x in result[first_step::increase_amount] if x.strip() != '∅' and x.strip() != "NA"]
notes_result = list(map(lambda x: float(x), notes_result))
notes_result = np.array(notes_result)
# الإحصائيات
average_x = np.average(notes_result)
min_x = notes_result.min()
max_x = notes_result.max()
std = np.std(notes_result)
z_score = (my_note - average_x) / std
# عرض الإحصائيات
st.subheader("المعلومات العامة")
st.write(f"عدد المشاركين: {len(notes_result)}")
st.write(f"أقل درجة: {min_x:.2f}")
st.write(f"أعلى درجة: {max_x:.2f}")
st.write(f"متوسط الدرجات: {average_x:.2f}")
st.write(f"الانحراف المعياري: {std:.2f}")
st.write(f"درجة Z: {z_score:.2f}")
# إنشاء الرسم البياني
st.subheader("رسم توزيع الدرجات")
unique_values, counts = np.unique(notes_result, return_counts=True)
plt.figure(figsize=(10, 6),dpi=150)
bars = plt.bar(unique_values, counts, width=0.3)
plt.axvline(x=average_x, color='red', linestyle='--')
plt.text(average_x + 1.5, max(counts), 'متوسط الدرجات', color='red', rotation=0, ha='center', va='bottom')
if my_note in unique_values:
plt.text(my_note, counts[unique_values == my_note][0], 'درجتي', color='green', rotation=0, ha='center', va='bottom')
for bar in bars:
if bar.get_x() <= my_note < bar.get_x() + bar.get_width():
bar.set_color('green')
plt.title(f'رسم توزيع الدرجات لمادة {lecture_name}')
plt.xlabel('الدرجات')
plt.ylabel('التكرار')
plt.xticks(range(0, int(perfect_score)+note_s_axis_diff, note_s_axis_diff), rotation=90)
plt.yticks(range(0, max(counts)+amount_s_axis_diff, amount_s_axis_diff), rotation=0)
# إضافة معلومات إلى الرسم البياني
info_text = (
f"عدد المشاركين: {len(notes_result)}\n"
f"أقل درجة: {min_x:.2f}\n"
f"أعلى درجة: {max_x:.2f}\n"
f"درجتي: {my_note:.2f}\n"
f"متوسط الدرجات: {average_x:.2f}\n"
f"الانحراف المعياري: {std:.2f}\n"
f"درجة Z: {z_score:.2f}"
)
plt.text(
1.05 * max(unique_values), 0.8 * max(counts),
info_text,
fontsize=10,
color="black",
ha="left",
va="top",
bbox=dict(boxstyle="round,pad=0.3", edgecolor="blue", facecolor="lightgrey")
)
plt.subplots_adjust(left=0.055, bottom=0.065, right=0.90, top=0.962, wspace=0.2, hspace=0.2)
# Sağ alt köşeye "Generated by Note Analyzer" metni ekle
plt.text(
0.99, -0.15, # Sağ alt köşeye konumlandır
"Generated by Note Analyzer at HuggingFace aliicemill/NoteAnalyzer space",
fontsize=8,
color="gray",
ha="right",
va="top",
transform=plt.gca().transAxes # Koordinatları grafiğe göre ayarla
)
plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9)
# عرض الرسم البياني
st.pyplot(plt)
# زر لتحميل الرسم البياني
buf = BytesIO()
plt.savefig(buf, format="png",bbox_inches='tight')
buf.seek(0)
st.download_button(
label="تحميل الرسم البياني",
data=buf,
file_name="score_distribution.png",
mime="image/png"
)
except Exception as e:
st.error(f"خطأ: {e}")
# التذييل
st.markdown("---")
st.write("تم التطوير بواسطة: علي جميل أوزدمير")
st.write("التاريخ: 01.12.2024")
st.write("للتعليقات والاقتراحات، يمكنك التواصل عبر: [email protected]")
# إضافة ملاحظة أسفل الزاوية اليمنى
st.markdown("""
<p style="position:absolute; bottom:0px; right:0px; font-size: 12px; color: gray;">
تم الإنشاء باستخدام محلل الدرجات
</p>
""", unsafe_allow_html=True)
def run_english():
# Title
st.title("Note Analyzer Streamlit Application")
# Image display state
if "show_images" not in st.session_state:
st.session_state.show_images = True # Default: images are shown
# Sidebar input area
st.sidebar.header("Input Fields")
text_input = st.sidebar.text_area("Paste the Notes Here", height=200)
# Other parameters
lecture_name = st.sidebar.text_input("Course Name", value="Course Name")
perfect_score = st.sidebar.number_input("Maximum Exam Score", value=100, step=1)
my_note = st.sidebar.number_input("My Score", value=0.0, step=0.1)
note_s_axis_diff = st.sidebar.number_input("By what value should the x-axis increase starting from 0?", value=3, step=1)
amount_s_axis_diff = st.sidebar.number_input("By what value should the y-axis increase starting from 0?", value=5, step=1)
first_step = st.sidebar.number_input("What is the index where notes start in your txt file:", value=0, step=1)
increase_amount = st.sidebar.number_input("How many headings (note, name, number, correct, incorrect etc.) are there in your txt file:", value=1, step=1)
if st.sidebar.button("Run Analysis"):
# Hide images when the button is clicked
st.session_state.show_images = False
# Show images only if show_images is True
if st.session_state.show_images:
st.subheader("How the Application Works(It is recommended to use from a computer)")
# List the image filenames in order
image_files = ["english/a.png", "english/b.png", "english/c.png", "english/d.png"]
# Display images one below the other
for image_file in image_files:
st.image(image_file, use_container_width=True)
# Load and process notes (Only works if the button is clicked)
if not st.session_state.show_images:
if input_method == "Upload File" and uploaded_file is None:
st.error("Please upload a file!")
elif input_method == "Copy-Paste" and not text_input:
st.error("Please paste the notes into the text area!")
else:
try:
# Read content from file or text area
if uploaded_file:
content = uploaded_file.read().decode("utf-8")
elif text_input:
content = text_input
# Process the data
content = content.strip()
result = re.split(r'[ \n]+', content)
# Clean and filter the data
notes_result = [x.strip() for x in result[first_step::increase_amount] if x.strip() != '∅' and x.strip() != "NA"]
notes_result = list(map(lambda x: float(x), notes_result))
notes_result = np.array(notes_result)
# Statistics
average_x = np.average(notes_result)
min_x = notes_result.min()
max_x = notes_result.max()
std = np.std(notes_result)
z_score = (my_note - average_x) / std
# Display statistics
st.subheader("General Information")
st.write(f"Number of Participants: {len(notes_result)}")
st.write(f"Lowest Score: {min_x:.2f}")
st.write(f"Highest Score: {max_x:.2f}")
st.write(f"Average Score: {average_x:.2f}")
st.write(f"Standard Deviation: {std:.2f}")
st.write(f"Z-Score: {z_score:.2f}")
# Create plot
st.subheader("Score Distribution Graph")
unique_values, counts = np.unique(notes_result, return_counts=True)
plt.figure(figsize=(10, 6),dpi=150)
bars = plt.bar(unique_values, counts, width=0.3)
plt.axvline(x=average_x, color='red', linestyle='--')
plt.text(average_x + 1.5, max(counts), 'Average Score', color='red', rotation=0, ha='center', va='bottom')
if my_note in unique_values:
plt.text(my_note, counts[unique_values == my_note][0], 'My\nScore', color='green', rotation=0, ha='center', va='bottom')
for bar in bars:
if bar.get_x() <= my_note < bar.get_x() + bar.get_width():
bar.set_color('green')
plt.title(f'{lecture_name} Score Distribution')
plt.xlabel('Scores')
plt.ylabel('Count')
plt.xticks(range(0, int(perfect_score)+note_s_axis_diff, note_s_axis_diff), rotation=90)
plt.yticks(range(0, max(counts)+amount_s_axis_diff, amount_s_axis_diff), rotation=0)
# Add graph information
info_text = (
f"Number of participants: {len(notes_result)}\n"
f"Lowest score: {min_x:.2f}\n"
f"Highest score: {max_x:.2f}\n"
f"My score: {my_note:.2f}\n"
f"Average score: {average_x:.2f}\n"
f"Standard deviation: {std:.2f}\n"
f"Z-score: {z_score:.2f}"
)
plt.text(
1.05 * max(unique_values), 0.8 * max(counts),
info_text,
fontsize=10,
color="black",
ha="left",
va="top",
bbox=dict(boxstyle="round,pad=0.3", edgecolor="blue", facecolor="lightgrey")
)
plt.subplots_adjust(left=0.055, bottom=0.065, right=0.90, top=0.962, wspace=0.2, hspace=0.2)
# Sağ alt köşeye "Generated by Note Analyzer" metni ekle
plt.text(
0.99, -0.15, # Sağ alt köşeye konumlandır
"Generated by Note Analyzer at HuggingFace aliicemill/NoteAnalyzer space",
fontsize=8,
color="gray",
ha="right",
va="top",
transform=plt.gca().transAxes # Koordinatları grafiğe göre ayarla
)
plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9)
# Display the plot
st.pyplot(plt)
# Download button for the plot
buf = BytesIO()
plt.savefig(buf, format="png",bbox_inches='tight')
buf.seek(0)
st.download_button(
label="Download Graph",
data=buf,
file_name="score_distribution.png",
mime="image/png"
)
except Exception as e:
st.error(f"Error: {e}")
# Footer
st.markdown("---")
st.write("Developed by: Ali Cemil Özdemir")
st.write("Date: 01.12.2024")
st.write("For feedback and suggestions, you can contact me at [email protected]")
# Add a note at the bottom right corner of the page
st.markdown("""
<p style="position:absolute; bottom:0px; right:0px; font-size: 12px; color: gray;">
Created with Note Analyzer
</p>
""", unsafe_allow_html=True)
# Session State'i başlat
if "language" not in st.session_state:
st.session_state.language = None
# Dil seçimi ekranı
if st.session_state.language is None:
st.title("(Double Click) Select language / (Çift Tıkla) Dili seçin / اختر اللغة (انقر نقرًا مزدوجًا)")
col1, col2, col3 = st.columns(3)
with col1:
if st.button("Türkçe"):
st.session_state.language = "turkish"
with col2:
if st.button("English"):
st.session_state.language = "english"
with col3:
if st.button("عربي"):
st.session_state.language = "arabic"
# Seçilen dilin programını çalıştır
else:
if st.session_state.language == "turkish":
run_turkish()
elif st.session_state.language == "english":
run_english()
elif st.session_state.language == "arabic":
run_arabic()