Spaces:
Sleeping
Sleeping
import streamlit as st | |
import re | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from io import BytesIO | |
def run_turkish(): | |
# Başlık | |
st.title("Note Analyzer Streamlit Uygulaması") | |
# Uygulamanın çalışma prensibi görüntüleme durumu | |
if "show_images" not in st.session_state: | |
st.session_state.show_images = True # Varsayılan olarak resimler gösterilsin | |
# Kullanıcıdan veri alma (Sidebar sabit kalıyor) | |
st.sidebar.header("Girdi Alanları") | |
# Dosya yükleme veya metin girişi seçimi | |
input_method = st.sidebar.radio( | |
"Notları nasıl gireceksiniz?", | |
options=["Dosya Yükle", "Kopyala-Yapıştır"] | |
) | |
uploaded_file = None | |
text_input = None | |
if input_method == "Dosya Yükle": | |
uploaded_file = st.sidebar.file_uploader("Notlar Dosyasını Yükleyin (TXT)", type=["txt"]) | |
elif input_method == "Kopyala-Yapıştır": | |
text_input = st.sidebar.text_area("Notları Yapıştırın", height=200) | |
# Diğer parametreler | |
lecture_name = st.sidebar.text_input("Ders Adı", value="Ders Adı") | |
perfect_score = st.sidebar.number_input("Sınav Puanı Üst Limiti", value=100, step=1) | |
my_note = st.sidebar.number_input("Benim Notum", value=0.0, step=0.1) | |
note_s_axis_diff = st.sidebar.number_input("Notlar X Ekseni Ortak Farkı", value=5, step=1) | |
amount_s_axis_diff = st.sidebar.number_input("Miktar Y Ekseni Ortak Farkı", value=1, step=1) | |
first_step = st.sidebar.number_input("İlk Adım", value=0, step=1) | |
increase_amount = st.sidebar.number_input("Artış Miktarı", value=1, step=1) | |
if st.sidebar.button("Analizi Çalıştır"): | |
# Butona basıldığında resimleri gizle | |
st.session_state.show_images = False | |
# Resimler yalnızca show_images True ise gösterilir | |
if st.session_state.show_images: | |
st.subheader("Uygulamanın Çalışma Prensibi") | |
# Resimlerin dosya isimlerini sırayla listele | |
image_files = ["turkish/a.png", "turkish/b.png", "turkish/c.png", "turkish/d.png"] | |
# Resimleri alt alta ekle | |
for image_file in image_files: | |
st.image(image_file, use_container_width=True) | |
# Notları yükleme ve işleme işlemleri (Butona basıldıysa çalışır) | |
if not st.session_state.show_images: | |
if input_method == "Dosya Yükle" and uploaded_file is None: | |
st.error("Lütfen bir dosya yükleyin!") | |
elif input_method == "Kopyala-Yapıştır" and not text_input: | |
st.error("Lütfen notları metin kutusuna yapıştırın!") | |
else: | |
try: | |
# Dosya veya metin kutusundan içerik okuma | |
if uploaded_file: | |
content = uploaded_file.read().decode("utf-8") | |
elif text_input: | |
content = text_input | |
# Veriyi işleme | |
content = content.strip() | |
result = re.split(r'[ \n]+', content) | |
# Strip fonksiyonu ve kaçış dizisi temizliği | |
notes_result = [x.strip() for x in result[first_step::increase_amount] if x.strip() != '∅' and x.strip() != "NA"] | |
notes_result = list(map(lambda x: float(x), notes_result)) | |
notes_result = np.array(notes_result) | |
# İstatistikler | |
average_x = np.average(notes_result) | |
min_x = notes_result.min() | |
max_x = notes_result.max() | |
std = np.std(notes_result) | |
z_score = (my_note - average_x) / std | |
# İstatistikleri ekrana yazdırma | |
st.subheader("Genel Bilgiler") | |
st.write(f"Katilimci Sayısı: {len(notes_result)}") | |
st.write(f"En Düşük Not: {min_x:.2f}") | |
st.write(f"En Yüksek Not: {max_x:.2f}") | |
st.write(f"Ortalama Not: {average_x:.2f}") | |
st.write(f"Standart Sapma: {std:.2f}") | |
st.write(f"Z-Skoru: {z_score:.2f}") | |
# Grafik oluşturma | |
st.subheader("Not Dağılım Grafiği") | |
unique_values, counts = np.unique(notes_result, return_counts=True) | |
plt.figure(figsize=(10, 6)) | |
bars = plt.bar(unique_values, counts, width=0.3) | |
plt.axvline(x=average_x, color='red', linestyle='--') | |
plt.text(average_x + 1.5, max(counts), 'Ortalama Not', color='red', rotation=0, ha='center', va='bottom') | |
if my_note in unique_values: | |
plt.text(my_note, counts[unique_values == my_note][0], 'Benim\nNotum', color='green', rotation=0, ha='center', va='bottom') | |
for bar in bars: | |
if bar.get_x() <= my_note < bar.get_x() + bar.get_width(): | |
bar.set_color('green') | |
plt.title(f'{lecture_name} Not Sayıları Grafiği') | |
plt.xlabel('Notlar') | |
plt.ylabel('Adet') | |
plt.xticks(range(0, int(perfect_score), note_s_axis_diff), rotation=90) | |
plt.yticks(range(0, max(counts), amount_s_axis_diff), rotation=0) | |
# Grafik bilgileri | |
info_text = ( | |
f"Katilimci sayısı: {len(notes_result)}\n" | |
f"En düşük not: {min_x:.2f}\n" | |
f"En yüksek not: {max_x:.2f}\n" | |
f"Benim notum: {my_note:.2f}\n" | |
f"Ortalama not: {average_x:.2f}\n" | |
f"Standart sapma: {std:.2f}\n" | |
f"Z-skoru: {z_score:.2f}" | |
) | |
plt.text( | |
1.05 * max(unique_values), 0.8 * max(counts), | |
info_text, | |
fontsize=10, | |
color="black", | |
ha="left", | |
va="top", | |
bbox=dict(boxstyle="round,pad=0.3", edgecolor="blue", facecolor="lightgrey") | |
) | |
plt.subplots_adjust(left=0.055, bottom=0.065, right=0.90, top=0.962, wspace=0.2, hspace=0.2) | |
# Sağ alt köşeye "Generated by Note Analyzer" metni ekle | |
plt.text( | |
0.99, -0.15, # Sağ alt köşeye konumlandır | |
"Generated by Note Analyzer at HuggingFace aliicemill/NoteAnalyzer space", | |
fontsize=8, | |
color="gray", | |
ha="right", | |
va="top", | |
transform=plt.gca().transAxes # Koordinatları grafiğe göre ayarla | |
) | |
# Grafik gösterimi | |
st.pyplot(plt) | |
# Grafik indirme bağlantısı | |
buf = BytesIO() | |
plt.savefig(buf, format="png") | |
buf.seek(0) | |
st.download_button( | |
label="Grafiği İndir", | |
data=buf, | |
file_name="not_dagilimi.png", | |
mime="image/png" | |
) | |
except Exception as e: | |
st.error(f"Hata: {e}") | |
# Web sayfasının altına isim ve tarih | |
st.markdown("---") | |
st.write("Developed by: Ali Cemil Özdemir") | |
st.write("Date: 01.12.2024") | |
st.write("For feedback and suggestions, you can contact me at [email protected]") | |
# Grafiklerin sağ alt köşesine yazı ekleme | |
st.markdown(""" | |
<p style="position:absolute; bottom:0px; right:0px; font-size: 12px; color: gray;"> | |
Created with Note Analyzer | |
</p> | |
""", unsafe_allow_html=True) | |
def run_arabic(): | |
# العنوان | |
st.title("تطبيق محلل الدرجات باستخدام Streamlit") | |
# حالة عرض الصور | |
if "show_images" not in st.session_state: | |
st.session_state.show_images = True # الافتراضي: يتم عرض الصور | |
# منطقة إدخال البيانات في الشريط الجانبي | |
st.sidebar.header("حقول الإدخال") | |
# اختيار رفع ملف أو إدخال النصوص يدويًا | |
input_method = st.sidebar.radio( | |
"كيف ستقدم الدرجات؟", | |
options=["رفع ملف", "نسخ ولصق"] | |
) | |
uploaded_file = None | |
text_input = None | |
if input_method == "رفع ملف": | |
uploaded_file = st.sidebar.file_uploader("قم برفع ملف الدرجات (TXT)", type=["txt"]) | |
elif input_method == "نسخ ولصق": | |
text_input = st.sidebar.text_area("قم بلصق الدرجات هنا", height=200) | |
# المعلمات الأخرى | |
lecture_name = st.sidebar.text_input("اسم المادة", value="اسم المادة") | |
perfect_score = st.sidebar.number_input("الدرجة الكاملة", value=100, step=1) | |
my_note = st.sidebar.number_input("درجتي", value=0.0, step=0.1) | |
note_s_axis_diff = st.sidebar.number_input("حجم خطوات المحور السيني للدرجات", value=5, step=1) | |
amount_s_axis_diff = st.sidebar.number_input("حجم خطوات المحور الصادي للتكرار", value=1, step=1) | |
first_step = st.sidebar.number_input("الخطوة الأولى", value=0, step=1) | |
increase_amount = st.sidebar.number_input("مقدار الزيادة", value=1, step=1) | |
if st.sidebar.button("تشغيل التحليل"): | |
# إخفاء الصور عند النقر على الزر | |
st.session_state.show_images = False | |
# عرض الصور فقط إذا كانت show_images صحيحة | |
if st.session_state.show_images: | |
st.subheader("كيفية عمل التطبيق") | |
# قائمة بأسماء ملفات الصور بالترتيب | |
image_files = ["arabic/a.png", "arabic/b.png", "arabic/c.png"] | |
# عرض الصور واحدة تحت الأخرى | |
for image_file in image_files: | |
st.image(image_file, use_container_width=True) | |
# تحميل ومعالجة الدرجات (يعمل فقط إذا تم النقر على الزر) | |
if not st.session_state.show_images: | |
if input_method == "رفع ملف" and uploaded_file is None: | |
st.error("يرجى رفع ملف!") | |
elif input_method == "نسخ ولصق" and not text_input: | |
st.error("يرجى لصق الدرجات في مربع النص!") | |
else: | |
try: | |
# قراءة المحتوى من الملف أو مربع النص | |
if uploaded_file: | |
content = uploaded_file.read().decode("utf-8") | |
elif text_input: | |
content = text_input | |
# معالجة البيانات | |
content = content.strip() | |
result = re.split(r'[ \n]+', content) | |
# تنظيف وتصنيف البيانات | |
notes_result = [x.strip() for x in result[first_step::increase_amount] if x.strip() != '∅' and x.strip() != "NA"] | |
notes_result = list(map(lambda x: float(x), notes_result)) | |
notes_result = np.array(notes_result) | |
# الإحصائيات | |
average_x = np.average(notes_result) | |
min_x = notes_result.min() | |
max_x = notes_result.max() | |
std = np.std(notes_result) | |
z_score = (my_note - average_x) / std | |
# عرض الإحصائيات | |
st.subheader("المعلومات العامة") | |
st.write(f"عدد المشاركين: {len(notes_result)}") | |
st.write(f"أقل درجة: {min_x:.2f}") | |
st.write(f"أعلى درجة: {max_x:.2f}") | |
st.write(f"متوسط الدرجات: {average_x:.2f}") | |
st.write(f"الانحراف المعياري: {std:.2f}") | |
st.write(f"درجة Z: {z_score:.2f}") | |
# إنشاء الرسم البياني | |
st.subheader("رسم توزيع الدرجات") | |
unique_values, counts = np.unique(notes_result, return_counts=True) | |
plt.figure(figsize=(10, 6)) | |
bars = plt.bar(unique_values, counts, width=0.3) | |
plt.axvline(x=average_x, color='red', linestyle='--') | |
plt.text(average_x + 1.5, max(counts), 'متوسط الدرجات', color='red', rotation=0, ha='center', va='bottom') | |
if my_note in unique_values: | |
plt.text(my_note, counts[unique_values == my_note][0], 'درجتي', color='green', rotation=0, ha='center', va='bottom') | |
for bar in bars: | |
if bar.get_x() <= my_note < bar.get_x() + bar.get_width(): | |
bar.set_color('green') | |
plt.title(f'رسم توزيع الدرجات لمادة {lecture_name}') | |
plt.xlabel('الدرجات') | |
plt.ylabel('التكرار') | |
plt.xticks(range(0, int(perfect_score), note_s_axis_diff), rotation=90) | |
plt.yticks(range(0, max(counts), amount_s_axis_diff), rotation=0) | |
# إضافة معلومات إلى الرسم البياني | |
info_text = ( | |
f"عدد المشاركين: {len(notes_result)}\n" | |
f"أقل درجة: {min_x:.2f}\n" | |
f"أعلى درجة: {max_x:.2f}\n" | |
f"درجتي: {my_note:.2f}\n" | |
f"متوسط الدرجات: {average_x:.2f}\n" | |
f"الانحراف المعياري: {std:.2f}\n" | |
f"درجة Z: {z_score:.2f}" | |
) | |
plt.text( | |
1.05 * max(unique_values), 0.8 * max(counts), | |
info_text, | |
fontsize=10, | |
color="black", | |
ha="left", | |
va="top", | |
bbox=dict(boxstyle="round,pad=0.3", edgecolor="blue", facecolor="lightgrey") | |
) | |
plt.subplots_adjust(left=0.055, bottom=0.065, right=0.90, top=0.962, wspace=0.2, hspace=0.2) | |
# Sağ alt köşeye "Generated by Note Analyzer" metni ekle | |
plt.text( | |
0.99, -0.15, # Sağ alt köşeye konumlandır | |
"Generated by Note Analyzer at HuggingFace aliicemill/NoteAnalyzer space", | |
fontsize=8, | |
color="gray", | |
ha="right", | |
va="top", | |
transform=plt.gca().transAxes # Koordinatları grafiğe göre ayarla | |
) | |
# عرض الرسم البياني | |
st.pyplot(plt) | |
# زر لتحميل الرسم البياني | |
buf = BytesIO() | |
plt.savefig(buf, format="png") | |
buf.seek(0) | |
st.download_button( | |
label="تحميل الرسم البياني", | |
data=buf, | |
file_name="score_distribution.png", | |
mime="image/png" | |
) | |
except Exception as e: | |
st.error(f"خطأ: {e}") | |
# التذييل | |
st.markdown("---") | |
st.write("تم التطوير بواسطة: علي جميل أوزدمير") | |
st.write("التاريخ: 01.12.2024") | |
st.write("للتعليقات والاقتراحات، يمكنك التواصل عبر: [email protected]") | |
# إضافة ملاحظة أسفل الزاوية اليمنى | |
st.markdown(""" | |
<p style="position:absolute; bottom:0px; right:0px; font-size: 12px; color: gray;"> | |
تم الإنشاء باستخدام محلل الدرجات | |
</p> | |
""", unsafe_allow_html=True) | |
def run_english(): | |
# Title | |
st.title("Note Analyzer Streamlit Application") | |
# Image display state | |
if "show_images" not in st.session_state: | |
st.session_state.show_images = True # Default: images are shown | |
# Sidebar input area | |
st.sidebar.header("Input Fields") | |
# File upload or text input selection | |
input_method = st.sidebar.radio( | |
"How will you provide the notes?", | |
options=["Upload File", "Copy-Paste"] | |
) | |
uploaded_file = None | |
text_input = None | |
if input_method == "Upload File": | |
uploaded_file = st.sidebar.file_uploader("Upload the Notes File (TXT)", type=["txt"]) | |
elif input_method == "Copy-Paste": | |
text_input = st.sidebar.text_area("Paste the Notes Here", height=200) | |
# Other parameters | |
lecture_name = st.sidebar.text_input("Course Name", value="Course Name") | |
perfect_score = st.sidebar.number_input("Maximum Exam Score", value=100, step=1) | |
my_note = st.sidebar.number_input("My Score", value=0.0, step=0.1) | |
note_s_axis_diff = st.sidebar.number_input("Score X-Axis Step Size", value=5, step=1) | |
amount_s_axis_diff = st.sidebar.number_input("Frequency Y-Axis Step Size", value=1, step=1) | |
first_step = st.sidebar.number_input("First Step", value=0, step=1) | |
increase_amount = st.sidebar.number_input("Step Increase", value=1, step=1) | |
if st.sidebar.button("Run Analysis"): | |
# Hide images when the button is clicked | |
st.session_state.show_images = False | |
# Show images only if show_images is True | |
if st.session_state.show_images: | |
st.subheader("How the Application Works") | |
# List the image filenames in order | |
image_files = ["english/a.png", "english/b.png", "english/c.png", "english/d.png"] | |
# Display images one below the other | |
for image_file in image_files: | |
st.image(image_file, use_container_width=True) | |
# Load and process notes (Only works if the button is clicked) | |
if not st.session_state.show_images: | |
if input_method == "Upload File" and uploaded_file is None: | |
st.error("Please upload a file!") | |
elif input_method == "Copy-Paste" and not text_input: | |
st.error("Please paste the notes into the text area!") | |
else: | |
try: | |
# Read content from file or text area | |
if uploaded_file: | |
content = uploaded_file.read().decode("utf-8") | |
elif text_input: | |
content = text_input | |
# Process the data | |
content = content.strip() | |
result = re.split(r'[ \n]+', content) | |
# Clean and filter the data | |
notes_result = [x.strip() for x in result[first_step::increase_amount] if x.strip() != '∅' and x.strip() != "NA"] | |
notes_result = list(map(lambda x: float(x), notes_result)) | |
notes_result = np.array(notes_result) | |
# Statistics | |
average_x = np.average(notes_result) | |
min_x = notes_result.min() | |
max_x = notes_result.max() | |
std = np.std(notes_result) | |
z_score = (my_note - average_x) / std | |
# Display statistics | |
st.subheader("General Information") | |
st.write(f"Number of Participants: {len(notes_result)}") | |
st.write(f"Lowest Score: {min_x:.2f}") | |
st.write(f"Highest Score: {max_x:.2f}") | |
st.write(f"Average Score: {average_x:.2f}") | |
st.write(f"Standard Deviation: {std:.2f}") | |
st.write(f"Z-Score: {z_score:.2f}") | |
# Create plot | |
st.subheader("Score Distribution Graph") | |
unique_values, counts = np.unique(notes_result, return_counts=True) | |
plt.figure(figsize=(10, 6)) | |
bars = plt.bar(unique_values, counts, width=0.3) | |
plt.axvline(x=average_x, color='red', linestyle='--') | |
plt.text(average_x + 1.5, max(counts), 'Average Score', color='red', rotation=0, ha='center', va='bottom') | |
if my_note in unique_values: | |
plt.text(my_note, counts[unique_values == my_note][0], 'My\nScore', color='green', rotation=0, ha='center', va='bottom') | |
for bar in bars: | |
if bar.get_x() <= my_note < bar.get_x() + bar.get_width(): | |
bar.set_color('green') | |
plt.title(f'{lecture_name} Score Distribution') | |
plt.xlabel('Scores') | |
plt.ylabel('Count') | |
plt.xticks(range(0, int(perfect_score), note_s_axis_diff), rotation=90) | |
plt.yticks(range(0, max(counts), amount_s_axis_diff), rotation=0) | |
# Add graph information | |
info_text = ( | |
f"Number of participants: {len(notes_result)}\n" | |
f"Lowest score: {min_x:.2f}\n" | |
f"Highest score: {max_x:.2f}\n" | |
f"My score: {my_note:.2f}\n" | |
f"Average score: {average_x:.2f}\n" | |
f"Standard deviation: {std:.2f}\n" | |
f"Z-score: {z_score:.2f}" | |
) | |
plt.text( | |
1.05 * max(unique_values), 0.8 * max(counts), | |
info_text, | |
fontsize=10, | |
color="black", | |
ha="left", | |
va="top", | |
bbox=dict(boxstyle="round,pad=0.3", edgecolor="blue", facecolor="lightgrey") | |
) | |
plt.subplots_adjust(left=0.055, bottom=0.065, right=0.90, top=0.962, wspace=0.2, hspace=0.2) | |
# Sağ alt köşeye "Generated by Note Analyzer" metni ekle | |
plt.text( | |
0.99, -0.15, # Sağ alt köşeye konumlandır | |
"Generated by Note Analyzer at HuggingFace aliicemill/NoteAnalyzer space", | |
fontsize=8, | |
color="gray", | |
ha="right", | |
va="top", | |
transform=plt.gca().transAxes # Koordinatları grafiğe göre ayarla | |
) | |
# Display the plot | |
st.pyplot(plt) | |
# Download button for the plot | |
buf = BytesIO() | |
plt.savefig(buf, format="png") | |
buf.seek(0) | |
st.download_button( | |
label="Download Graph", | |
data=buf, | |
file_name="score_distribution.png", | |
mime="image/png" | |
) | |
except Exception as e: | |
st.error(f"Error: {e}") | |
# Footer | |
st.markdown("---") | |
st.write("Developed by: Ali Cemil Özdemir") | |
st.write("Date: 01.12.2024") | |
st.write("For feedback and suggestions, you can contact me at [email protected]") | |
# Add a note at the bottom right corner of the page | |
st.markdown(""" | |
<p style="position:absolute; bottom:0px; right:0px; font-size: 12px; color: gray;"> | |
Created with Note Analyzer | |
</p> | |
""", unsafe_allow_html=True) | |
# Session State'i başlat | |
if "language" not in st.session_state: | |
st.session_state.language = None | |
# Dil seçimi ekranı | |
if st.session_state.language is None: | |
st.title("Select language / Dili seçin / اختر اللغة") | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
if st.button("Türkçe"): | |
st.session_state.language = "turkish" | |
with col2: | |
if st.button("English"): | |
st.session_state.language = "english" | |
with col3: | |
if st.button("عربي"): | |
st.session_state.language = "arabic" | |
# Seçilen dilin programını çalıştır | |
else: | |
if st.session_state.language == "turkish": | |
run_turkish() | |
elif st.session_state.language == "english": | |
run_english() | |
elif st.session_state.language == "arabic": | |
run_arabic() | |