Spaces:
Runtime error
Runtime error
Commit
·
ad1ff60
1
Parent(s):
acea17b
Upload 16 files
Browse files- 2ct.ipynb +0 -0
- How_to_use.png +0 -0
- README.md +1 -13
- app.py +625 -0
- assets/css/style.css +37 -0
- assets/webfonts/font.txt +3 -0
- className.txt +1 -0
- count_class.txt +0 -0
- css/style.css +93 -0
- packages.txt +1 -0
- requirements.txt +10 -0
- save_images/dff_image.png +0 -0
- save_images/gradcam_image.png +0 -0
- save_images/hi.txt +0 -0
- save_name.txt +24 -0
- system.txt +1 -0
2ct.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
How_to_use.png
ADDED
![]() |
README.md
CHANGED
@@ -1,13 +1 @@
|
|
1 |
-
|
2 |
-
title: NSCLC Classification
|
3 |
-
emoji: 😻
|
4 |
-
colorFrom: purple
|
5 |
-
colorTo: purple
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.19.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: mit
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
# ViTLungMiNi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,625 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from transformers import BeitImageProcessor, BeitForImageClassification
|
3 |
+
from PIL import Image
|
4 |
+
import PIL.Image as Image
|
5 |
+
import csv
|
6 |
+
|
7 |
+
from streamlit_echarts import st_echarts
|
8 |
+
from st_on_hover_tabs import on_hover_tabs
|
9 |
+
import streamlit as st
|
10 |
+
|
11 |
+
st.set_page_config(layout="wide")
|
12 |
+
|
13 |
+
import warnings
|
14 |
+
warnings.filterwarnings('ignore')
|
15 |
+
from torchvision import transforms
|
16 |
+
from datasets import load_dataset
|
17 |
+
from pytorch_grad_cam import run_dff_on_image, GradCAM
|
18 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
19 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
20 |
+
import cv2
|
21 |
+
import torch
|
22 |
+
from torch import nn
|
23 |
+
from typing import List, Callable, Optional
|
24 |
+
import os
|
25 |
+
import pandas as pd
|
26 |
+
import pydicom
|
27 |
+
|
28 |
+
labels = ["adenocarcinoma","large.cell","normal","squamous.cell"]
|
29 |
+
model_name_or_path = 'alicelouis/BeiT_NSCLC_lr2e-5'
|
30 |
+
st.markdown('''
|
31 |
+
<style>
|
32 |
+
section[data-testid='stSidebar'] {
|
33 |
+
background-color: #111;
|
34 |
+
min-width: unset !important;
|
35 |
+
width: unset !important;
|
36 |
+
flex-shrink: unset !important;
|
37 |
+
}
|
38 |
+
|
39 |
+
button[kind="header"] {
|
40 |
+
background-color: transparent;
|
41 |
+
color: rgb(180, 167, 141);
|
42 |
+
}
|
43 |
+
|
44 |
+
@media (hover) {
|
45 |
+
/* header element to be removed */
|
46 |
+
header["data"-testid="stHeader"] {
|
47 |
+
display: none;
|
48 |
+
}
|
49 |
+
|
50 |
+
/* The navigation menu specs and size */
|
51 |
+
section[data-testid='stSidebar'] > div {
|
52 |
+
height: 100%;
|
53 |
+
width: 95px;
|
54 |
+
position: relative;
|
55 |
+
z-index: 1;
|
56 |
+
top: 0;
|
57 |
+
left: 0;
|
58 |
+
background-color: #111;
|
59 |
+
overflow-x: hidden;
|
60 |
+
transition: 0.5s ease;
|
61 |
+
padding-top: 60px;
|
62 |
+
white-space: nowrap;
|
63 |
+
}
|
64 |
+
|
65 |
+
/* The navigation menu open and close on hover and size */
|
66 |
+
/* section[data-testid='stSidebar'] > div {
|
67 |
+
height: 100%;
|
68 |
+
width: 75px; /* Put some width to hover on. */
|
69 |
+
/* }
|
70 |
+
|
71 |
+
/* ON HOVER */
|
72 |
+
section[data-testid='stSidebar'] > div:hover{
|
73 |
+
width: 300px;
|
74 |
+
}
|
75 |
+
|
76 |
+
/* The button on the streamlit navigation menu - hidden */
|
77 |
+
button[kind="header"] {
|
78 |
+
display: none;
|
79 |
+
}
|
80 |
+
}
|
81 |
+
|
82 |
+
@media (max-width: 272px) {
|
83 |
+
section["data"-testid='stSidebar'] > div {
|
84 |
+
width: 15rem;
|
85 |
+
}/.
|
86 |
+
}
|
87 |
+
</style>
|
88 |
+
''', unsafe_allow_html=True)
|
89 |
+
|
90 |
+
@st.cache_resource(show_spinner=False,ttl=1800,max_entries=2)
|
91 |
+
def FeatureExtractor(model_name_or_path):
|
92 |
+
feature_extractor = BeitImageProcessor.from_pretrained(model_name_or_path)
|
93 |
+
return feature_extractor
|
94 |
+
|
95 |
+
|
96 |
+
@st.cache_resource(show_spinner=False,ttl=1800,max_entries=2)
|
97 |
+
def LoadModel(model_name_or_path):
|
98 |
+
model = BeitForImageClassification.from_pretrained(
|
99 |
+
model_name_or_path,
|
100 |
+
num_labels=len(labels),
|
101 |
+
id2label={int(i): c for i, c in enumerate(labels)},
|
102 |
+
label2id={c: int(i) for i, c in enumerate(labels)},
|
103 |
+
ignore_mismatched_sizes=True)
|
104 |
+
return model
|
105 |
+
|
106 |
+
|
107 |
+
# Model wrapper to return a tensor
|
108 |
+
class HuggingfaceToTensorModelWrapper(torch.nn.Module):
|
109 |
+
def __init__(self, model):
|
110 |
+
super(HuggingfaceToTensorModelWrapper, self).__init__()
|
111 |
+
self.model = model
|
112 |
+
|
113 |
+
def forward(self, x):
|
114 |
+
return self.model(x).logits
|
115 |
+
|
116 |
+
# """ Translate the category name to the category index.
|
117 |
+
# Some models aren't trained on Imagenet but on even larger "data"sets,
|
118 |
+
# so we can't just assume that 761 will always be remote-control.
|
119 |
+
|
120 |
+
# """
|
121 |
+
def category_name_to_index(model, category_name):
|
122 |
+
name_to_index = dict((v, k) for k, v in model.config.id2label.items())
|
123 |
+
return name_to_index[category_name]
|
124 |
+
|
125 |
+
# """ Helper function to run GradCAM on an image and create a visualization.
|
126 |
+
# (note to myself: this is probably useful enough to move into the package)
|
127 |
+
# If several targets are passed in targets_for_gradcam,
|
128 |
+
# e.g different categories,
|
129 |
+
# a visualization for each of them will be created.
|
130 |
+
|
131 |
+
# """
|
132 |
+
def print_top_categories(model, img_tensor, top_k=5):
|
133 |
+
feature_extractor = FeatureExtractor(model_name_or_path)
|
134 |
+
inputs = feature_extractor(images=img_tensor, return_tensors="pt")
|
135 |
+
outputs = model(**inputs)
|
136 |
+
logits = outputs.logits
|
137 |
+
indices = logits.cpu()[0, :].detach().numpy().argsort()[-top_k :][::-1]
|
138 |
+
probabilities = nn.functional.softmax(logits, dim=-1)
|
139 |
+
topK = dict()
|
140 |
+
for i in indices:
|
141 |
+
topK[model.config.id2label[i]] = probabilities[0][i].item()*100
|
142 |
+
return topK
|
143 |
+
|
144 |
+
def reshape_transform_vit_huggingface(x):
|
145 |
+
activations = x[:, 1:, :]
|
146 |
+
|
147 |
+
activations = activations.view(activations.shape[0],
|
148 |
+
14, 14, activations.shape[2])
|
149 |
+
|
150 |
+
activations = activations.transpose(2, 3).transpose(1, 2)
|
151 |
+
|
152 |
+
return activations
|
153 |
+
|
154 |
+
|
155 |
+
def count_system():
|
156 |
+
count_system = []
|
157 |
+
with open('count_class.txt', 'r') as f:
|
158 |
+
for line in f:
|
159 |
+
if line.strip() == '0':
|
160 |
+
continue
|
161 |
+
else:
|
162 |
+
count_system.append(line.strip())
|
163 |
+
f.close()
|
164 |
+
if len(count_system) != 0:
|
165 |
+
return int(len(count_system))
|
166 |
+
elif len(count_system) == 0:
|
167 |
+
return int(0)
|
168 |
+
|
169 |
+
|
170 |
+
def count_class(count_classes):
|
171 |
+
a = 0
|
172 |
+
b = 0
|
173 |
+
c = 0
|
174 |
+
d = 0
|
175 |
+
for i in range(len(count_classes)):
|
176 |
+
if count_classes[i] == "Adeno":
|
177 |
+
a += 1
|
178 |
+
elif count_classes[i] == "Normal":
|
179 |
+
b += 1
|
180 |
+
elif count_classes[i] == "Large":
|
181 |
+
c += 1
|
182 |
+
elif count_classes[i] == "Squamous":
|
183 |
+
d += 1
|
184 |
+
count_classes = []
|
185 |
+
count_classes.append(str(a))
|
186 |
+
count_classes.append(str(b))
|
187 |
+
count_classes.append(str(c))
|
188 |
+
count_classes.append(str(d))
|
189 |
+
with open("count_class.txt", "w") as f:
|
190 |
+
for count in count_classes:
|
191 |
+
f.write(count + "\n")
|
192 |
+
|
193 |
+
# Define CSS styling for centering
|
194 |
+
centered_style = """
|
195 |
+
display: flex;
|
196 |
+
justify-content: center;
|
197 |
+
"""
|
198 |
+
|
199 |
+
st.markdown(
|
200 |
+
"""
|
201 |
+
<div style='border: 2px solid green; border-radius: 5px; padding: 10px; background-color: white;'>
|
202 |
+
<h1 style='text-align: center; color: green;'>
|
203 |
+
🏥 Lung Cancer Classification with Vision Transformer : จำแนกมะเร็งปอด 🫁
|
204 |
+
</h1>
|
205 |
+
</div>
|
206 |
+
""", unsafe_allow_html=True)
|
207 |
+
|
208 |
+
with open("assets/css/style.css") as f:
|
209 |
+
st.markdown(f"<style> {f.read()} </style>",unsafe_allow_html=True)
|
210 |
+
with open("assets/webfonts/font.txt") as f:
|
211 |
+
st.markdown(f.read(),unsafe_allow_html=True)
|
212 |
+
# end def
|
213 |
+
|
214 |
+
with st.sidebar:
|
215 |
+
tabs = on_hover_tabs(tabName=['Home','Upload', 'Analytics', 'More Information', 'Reset'],
|
216 |
+
iconName=['home','upload', 'analytics', 'informations', 'refresh'],
|
217 |
+
styles={'navtab': {'background-color': '#111', 'color': '#818181', 'font-size': '18px',
|
218 |
+
'transition': '.3s', 'white-space': 'nowrap', 'text-transform': 'uppercase'},
|
219 |
+
'tabOptionsStyle':
|
220 |
+
{':hover :hover': {'color': 'red', 'cursor': 'pointer'}}, 'iconStyle':
|
221 |
+
{'position': 'fixed', 'left': '7.5px', 'text-align': 'left'}, 'tabStyle':
|
222 |
+
{'list-style-type': 'none', 'margin-bottom': '30px', 'padding-left': '30px'}},
|
223 |
+
key="1",default_choice=0)
|
224 |
+
st.markdown(
|
225 |
+
"""
|
226 |
+
<div style='border: 2px solid green; padding: 10px; white; margin-top: 5px; margin-buttom: 5px; margin-right: 20px; bottom: 50;'>
|
227 |
+
<h1 style='text-align: center; color: green; font-size: 100%'> ได้รับทุนสนับสนุน 2,000 บาท </h1>
|
228 |
+
<h1 style='text-align: center; color: green; font-size: 100%'> National Software Contest ครั้งที่ 25 </h1>
|
229 |
+
<h1 style='text-align: center; color: green; font-size: 100%'> ประจำปีงบประมาณ 2566 </h1>
|
230 |
+
</div>
|
231 |
+
""", unsafe_allow_html=True)
|
232 |
+
data_base = []
|
233 |
+
if tabs == 'Home':
|
234 |
+
st.image('How_to_use.png',use_column_width=True)
|
235 |
+
elif tabs == 'Upload': #and count_system () != 1:
|
236 |
+
uploaded_file = st.file_uploader("อัปโหลดไฟล์ภาพ", type=["jpg", "jpeg", "png", "dcm"], accept_multiple_files=True)
|
237 |
+
name_of_files = []
|
238 |
+
name_of_files_new = []
|
239 |
+
for n in uploaded_file:
|
240 |
+
file_name = n.name
|
241 |
+
name_of_files.append(file_name)
|
242 |
+
with open("save_name.txt", "w") as f:
|
243 |
+
for name in name_of_files:
|
244 |
+
f.write(name + "\n")
|
245 |
+
for j in range(len(name_of_files)):
|
246 |
+
if name_of_files[j].endswith('.dcm'):
|
247 |
+
name_of_files_new.append(name_of_files[j][:-4] + '.png')
|
248 |
+
else:
|
249 |
+
name_of_files_new.append(name_of_files[j])
|
250 |
+
for i in range(len(uploaded_file)):
|
251 |
+
if name_of_files[i].endswith('.dcm'):
|
252 |
+
ds = pydicom.dcmread(uploaded_file[i])
|
253 |
+
new_image = ds.pixel_array.astype(float)
|
254 |
+
scaled_image = (np.maximum(new_image, 0) / new_image.max()) * 255.0
|
255 |
+
scaled_image = np.uint8(scaled_image)
|
256 |
+
gray_scale = Image.fromarray(scaled_image)
|
257 |
+
final_image = gray_scale.convert('RGB')
|
258 |
+
final_image.resize((200,200))
|
259 |
+
final_image.save(r'.\dcm_png\{}.png'.format(name_of_files[i]))
|
260 |
+
feature_extractor = FeatureExtractor(model_name_or_path)
|
261 |
+
model = LoadModel(model_name_or_path)
|
262 |
+
if name_of_files[i].endswith('.dcm'):
|
263 |
+
img = Image.open(r'.\dcm_png\{}.png'.format(name_of_files[i]))
|
264 |
+
else:
|
265 |
+
img = Image.open(uploaded_file[i])
|
266 |
+
img_out = img.resize((224,224))
|
267 |
+
img_out = np.array(img_out)
|
268 |
+
# โหลดโมเดลที่เซฟ
|
269 |
+
image = img.resize((224,224))
|
270 |
+
img_tensor = transforms.ToTensor()(image)
|
271 |
+
def run_grad_cam_on_image(model: torch.nn.Module,
|
272 |
+
target_layer: torch.nn.Module,
|
273 |
+
targets_for_gradcam: List[Callable],
|
274 |
+
reshape_transform: Optional[Callable],
|
275 |
+
input_tensor: torch.nn.Module=img_tensor,
|
276 |
+
input_image: Image=image,
|
277 |
+
method: Callable=GradCAM):
|
278 |
+
with method(model=HuggingfaceToTensorModelWrapper(model),
|
279 |
+
target_layers=[target_layer],
|
280 |
+
reshape_transform=reshape_transform) as cam:
|
281 |
+
# Replicate the tensor for each of the categories we want to create Grad-CAM for:
|
282 |
+
repeated_tensor = input_tensor[None, :].repeat(len(targets_for_gradcam), 1, 1, 1)
|
283 |
+
|
284 |
+
batch_results = cam(input_tensor=repeated_tensor,
|
285 |
+
targets=targets_for_gradcam)
|
286 |
+
results = []
|
287 |
+
for grayscale_cam in batch_results:
|
288 |
+
visualization = show_cam_on_image(np.float32(input_image)/255,
|
289 |
+
grayscale_cam,
|
290 |
+
use_rgb=True)
|
291 |
+
# Make it weight less in the notebook:
|
292 |
+
visualization = cv2.resize(visualization,
|
293 |
+
(visualization.shape[1]//2, visualization.shape[0]//2))
|
294 |
+
results.append(visualization)
|
295 |
+
return np.hstack(results)
|
296 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
297 |
+
targets_for_gradcam = [ClassifierOutputTarget(category_name_to_index(model, "adenocarcinoma")),
|
298 |
+
ClassifierOutputTarget(category_name_to_index(model, "large.cell")),
|
299 |
+
ClassifierOutputTarget(category_name_to_index(model, "normal")),
|
300 |
+
ClassifierOutputTarget(category_name_to_index(model, "squamous.cell"))
|
301 |
+
]
|
302 |
+
target_layer_dff = model.beit.layernorm
|
303 |
+
target_layer_gradcam = model.beit.encoder.layer[-2].output
|
304 |
+
image_resized = image.resize((224, 224))
|
305 |
+
tensor_resized = transforms.ToTensor()(image_resized)
|
306 |
+
outputs = model(**inputs)
|
307 |
+
logits = outputs.logits
|
308 |
+
# model predicts one of the 4 classes
|
309 |
+
predicted_class_idx = logits.argmax(-1).item()
|
310 |
+
className = labels[predicted_class_idx]
|
311 |
+
# display the images on streamlit
|
312 |
+
dff_image = Image.fromarray(run_dff_on_image(model=model,
|
313 |
+
target_layer=target_layer_dff,
|
314 |
+
classifier=model.classifier,
|
315 |
+
img_pil=image_resized,
|
316 |
+
img_tensor=tensor_resized,
|
317 |
+
reshape_transform=reshape_transform_vit_huggingface,
|
318 |
+
n_components=4,
|
319 |
+
top_k=4))
|
320 |
+
# dff_image.save(r".\save_images\dff_image.png")
|
321 |
+
# gradcam_image.save(r".\save_images\gradcam_image.png")
|
322 |
+
topK = print_top_categories(model, tensor_resized)
|
323 |
+
df = pd.DataFrame.from_dict(topK, orient='index')
|
324 |
+
list_to_be_sorted= []
|
325 |
+
for x, y in topK.items():
|
326 |
+
dic = dict()
|
327 |
+
dic["value"] = y
|
328 |
+
dic["name"] = x
|
329 |
+
list_to_be_sorted.append(dic)
|
330 |
+
data_base.append(y)
|
331 |
+
if list_to_be_sorted[0]['name'] == "adenocarcinoma":
|
332 |
+
dff_image.save(r".\Adenocarcinoma\{}".format(name_of_files_new[i]))
|
333 |
+
image_path = name_of_files_new[i]
|
334 |
+
with Image.open(r".\Adenocarcinoma\{}".format(image_path)) as image:
|
335 |
+
width, height = image.size
|
336 |
+
new_width = 2 * width // 3
|
337 |
+
cropped_image = image.crop((0, 0, new_width, height))
|
338 |
+
cropped_image.save(r".\Adenocarcinoma\{}".format(image_path))
|
339 |
+
elif list_to_be_sorted[0]['name'] == "large.cell":
|
340 |
+
dff_image.save(r".\Large cell carcinoma\{}".format(name_of_files_new[i]))
|
341 |
+
image_path = name_of_files_new[i]
|
342 |
+
with Image.open(r".\Large cell carcinoma\{}".format(image_path)) as image:
|
343 |
+
width, height = image.size
|
344 |
+
new_width = 2 * width // 3
|
345 |
+
cropped_image = image.crop((0, 0, new_width, height))
|
346 |
+
cropped_image.save(r".\Large cell carcinoma\{}".format(image_path))
|
347 |
+
#dff_image.save(r".\Large cell carcinoma\{}".format(name_of_files_new[i]))
|
348 |
+
elif list_to_be_sorted[0]['name'] == "normal":
|
349 |
+
dff_image.save(r".\Normal\{}".format(name_of_files_new[i]))
|
350 |
+
image_path = name_of_files_new[i]
|
351 |
+
with Image.open(r".\Normal\{}".format(image_path)) as image:
|
352 |
+
width, height = image.size
|
353 |
+
new_width = 2 * width // 3
|
354 |
+
cropped_image = image.crop((0, 0, new_width, height))
|
355 |
+
cropped_image.save(r".\Normal\{}".format(image_path))
|
356 |
+
#dff_image.save(r".\Normal\{}".format(name_of_files_new[i]))
|
357 |
+
elif list_to_be_sorted[0]['name'] == "squamous.cell":
|
358 |
+
dff_image.save(r".\Squamous cell carcinoma\{}".format(name_of_files_new[i]))
|
359 |
+
image_path = name_of_files_new[i]
|
360 |
+
with Image.open(r".\Squamous cell carcinoma\{}".format(image_path)) as image:
|
361 |
+
width, height = image.size
|
362 |
+
new_width = 2 * width // 3
|
363 |
+
cropped_image = image.crop((0, 0, new_width, height))
|
364 |
+
cropped_image.save(r".\Squamous cell carcinoma\{}".format(image_path))
|
365 |
+
#dff_image.save(r".\Squamous cell carcinoma\{}".format(name_of_files_new[i]))
|
366 |
+
# st.image(dff_image, use_column_width=True)
|
367 |
+
# st.image(gradcam_image, use_column_width=True)
|
368 |
+
st.balloons()
|
369 |
+
|
370 |
+
# Create a container for the two columns
|
371 |
+
container = st.container()
|
372 |
+
# Create two columns within the container
|
373 |
+
col1, col2 = container.columns(2)
|
374 |
+
col3, col4 = container.columns(2)
|
375 |
+
col5, col6 = container.columns(2)
|
376 |
+
# Add the first subheader to the first column
|
377 |
+
count_classes = [] #Adenocarcinoma, Normal, Large cell carcinoma, Squamous cell carcinoma
|
378 |
+
with col1:
|
379 |
+
st.markdown("<h2 style='text-align: center; border: 2px solid #5370c6; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Adenocarcinoma </h2>".format(centered_style), unsafe_allow_html=True)
|
380 |
+
# Add the second subheader to the second column
|
381 |
+
folder_path = r".\Adenocarcinoma"
|
382 |
+
image_files = [f for f in os.listdir(folder_path) if f.endswith('.png') or f.endswith('.jpg')]
|
383 |
+
# Display the images in a loop
|
384 |
+
for i in range(0, len(image_files), 2):
|
385 |
+
col7, col8 = st.columns([1, 1])
|
386 |
+
with col7:
|
387 |
+
if i < len(image_files):
|
388 |
+
image1 = Image.open(os.path.join(folder_path, image_files[i]))
|
389 |
+
st.image(image1, use_column_width=True)
|
390 |
+
st.write(f"<p style='text-align: center; color: black; border: 2px solid white; border-radius: 10px; padding: 10px; background-color: #5370c6; font-size: 32px;'>{image_files[i]}</p>", unsafe_allow_html=True)
|
391 |
+
count_classes.append("Adeno")
|
392 |
+
with col8:
|
393 |
+
if i+1 < len(image_files):
|
394 |
+
image2 = Image.open(os.path.join(folder_path, image_files[i+1]))
|
395 |
+
st.image(image2, use_column_width=True)
|
396 |
+
st.write(f"<p style='text-align: center; color: black; border: 2px solid white; border-radius: 10px; padding: 10px; background-color: #5370c6; font-size: 32px;'>{image_files[i+1]}</p>", unsafe_allow_html=True)
|
397 |
+
count_classes.append("Adeno")
|
398 |
+
with col2:
|
399 |
+
st.markdown("<h2 style='text-align: center; border: 2px solid green; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Normal </h2>".format(centered_style), unsafe_allow_html=True)
|
400 |
+
folder_path = r".\Normal"
|
401 |
+
image_files = [f for f in os.listdir(folder_path) if f.endswith('.png') or f.endswith('.jpg')]
|
402 |
+
# Display the images in a loop
|
403 |
+
for i in range(0, len(image_files), 2):
|
404 |
+
col9, col10 = st.columns([1, 1])
|
405 |
+
with col9:
|
406 |
+
if i < len(image_files):
|
407 |
+
image1 = Image.open(os.path.join(folder_path, image_files[i]))
|
408 |
+
st.image(image1, use_column_width=True)
|
409 |
+
st.write(f"<p style='text-align: center; color: black; border: 2px solid white; border-radius: 10px; padding: 10px; background-color: green; font-size: 32px;'>{image_files[i]}</p>", unsafe_allow_html=True)
|
410 |
+
count_classes.append("Normal")
|
411 |
+
with col10:
|
412 |
+
if i+1 < len(image_files):
|
413 |
+
image2 = Image.open(os.path.join(folder_path, image_files[i+1]))
|
414 |
+
st.image(image2, use_column_width=True)
|
415 |
+
st.write(f"<p style='text-align: center; color: black; border: 2px solid white; border-radius: 10px; padding: 10px; background-color: green; font-size: 32px;'>{image_files[i+1]}</p>", unsafe_allow_html=True)
|
416 |
+
count_classes.append("Normal")
|
417 |
+
with col3:
|
418 |
+
st.markdown("")
|
419 |
+
with col4:
|
420 |
+
st.markdown("")
|
421 |
+
|
422 |
+
with col5:
|
423 |
+
st.markdown("<h2 style='text-align: center; border: 2px solid orange; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Large cell carcinoma </h2>".format(centered_style), unsafe_allow_html=True)
|
424 |
+
folder_path = r".\Large cell carcinoma"
|
425 |
+
image_files = [f for f in os.listdir(folder_path) if f.endswith('.png') or f.endswith('.jpg')]
|
426 |
+
# Display the images in a loop
|
427 |
+
for i in range(0, len(image_files), 2):
|
428 |
+
col11, col12 = st.columns([1, 1])
|
429 |
+
with col11:
|
430 |
+
if i < len(image_files):
|
431 |
+
image1 = Image.open(os.path.join(folder_path, image_files[i]))
|
432 |
+
st.image(image1, use_column_width=True)
|
433 |
+
st.write(f"<p style='text-align: center; color: black; border: 2px solid white; border-radius: 10px; padding: 10px; background-color: orange; font-size: 32px;'>{image_files[i]}</p>", unsafe_allow_html=True)
|
434 |
+
count_classes.append("Large")
|
435 |
+
with col12:
|
436 |
+
if i+1 < len(image_files):
|
437 |
+
image2 = Image.open(os.path.join(folder_path, image_files[i+1]))
|
438 |
+
st.image(image2, use_column_width=True)
|
439 |
+
st.write(f"<p style='text-align: center; color: black; border: 2px solid white; border-radius: 10px; padding: 10px; background-color: orange; font-size: 32px;'>{image_files[i+1]}</p>", unsafe_allow_html=True)
|
440 |
+
count_classes.append("Large")
|
441 |
+
with col6:
|
442 |
+
st.markdown("<h2 style='text-align: center; border: 2px solid #f16565; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Squamous cell carcinoma </h2>".format(centered_style), unsafe_allow_html=True)
|
443 |
+
folder_path = r".\Squamous cell carcinoma"
|
444 |
+
image_files = [f for f in os.listdir(folder_path) if f.endswith('.png') or f.endswith('.jpg')]
|
445 |
+
# Display the images in a loop
|
446 |
+
for i in range(0, len(image_files), 2):
|
447 |
+
col13, col14 = st.columns([1, 1])
|
448 |
+
with col13:
|
449 |
+
if i < len(image_files):
|
450 |
+
image1 = Image.open(os.path.join(folder_path, image_files[i]))
|
451 |
+
st.image(image1, use_column_width=True)
|
452 |
+
st.write(f"<p style='text-align: center; color: black; border: 2px solid white; border-radius: 10px; padding: 10px; background-color: #f16565; font-size: 32px;'>{image_files[i]}</p>", unsafe_allow_html=True)
|
453 |
+
count_classes.append("Squamous")
|
454 |
+
with col14:
|
455 |
+
if i+1 < len(image_files):
|
456 |
+
image2 = Image.open(os.path.join(folder_path, image_files[i+1]))
|
457 |
+
st.image(image2, use_column_width=True)
|
458 |
+
st.write(f"<p style='text-align: center; color: black; border: 2px solid white; border-radius: 10px; padding: 10px; background-color: #f16565; font-size: 32px;'>{image_files[i+1]}</p>", unsafe_allow_html=True)
|
459 |
+
count_classes.append("Squamous")
|
460 |
+
count_class(count_classes)
|
461 |
+
|
462 |
+
elif tabs == 'Analytics' and count_system() > 0:
|
463 |
+
data_base = []
|
464 |
+
data_base_max = []
|
465 |
+
#max_value = max(data_base)
|
466 |
+
#max_index = data_base.index(max_value)
|
467 |
+
with open('count_class.txt', 'r') as f:
|
468 |
+
for line in f:
|
469 |
+
data_base.append(line.strip())
|
470 |
+
data_base_max.append(int(line.strip()))
|
471 |
+
max_value = max(data_base_max) # Find the maximum value in the list
|
472 |
+
max_index = data_base_max.index(max_value)
|
473 |
+
max_indices = [i for i, value in enumerate(data_base_max) if value == max_value]
|
474 |
+
if len(max_indices) > 1:
|
475 |
+
max_index = 4
|
476 |
+
option = {
|
477 |
+
"tooltip": {
|
478 |
+
"trigger": 'axis',
|
479 |
+
"axisPointer": {
|
480 |
+
# Use axis to trigger tooltip
|
481 |
+
"type": 'shadow' # 'shadow' as default; can also be 'line' or 'shadow'
|
482 |
+
}
|
483 |
+
},
|
484 |
+
"legend": {},
|
485 |
+
"grid": {
|
486 |
+
"left": '3%',
|
487 |
+
"right": '4%',
|
488 |
+
"bottom": '3%',
|
489 |
+
"containLabel": True
|
490 |
+
},
|
491 |
+
"xAxis": {
|
492 |
+
"type": 'value'
|
493 |
+
},
|
494 |
+
"yAxis": {
|
495 |
+
"type": 'category',
|
496 |
+
"data": ['Results']
|
497 |
+
},
|
498 |
+
"series": [
|
499 |
+
{
|
500 |
+
"name": 'Adenocarcinoma',
|
501 |
+
"type": 'bar',
|
502 |
+
"stack": 'total',
|
503 |
+
"label": {
|
504 |
+
"show": True
|
505 |
+
},
|
506 |
+
"emphasis": {
|
507 |
+
"focus": 'series'
|
508 |
+
},
|
509 |
+
"data": [data_base[0]]
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"name": 'Normal',
|
513 |
+
"type": 'bar',
|
514 |
+
"stack": 'total',
|
515 |
+
"label": {
|
516 |
+
"show": True
|
517 |
+
},
|
518 |
+
"emphasis": {
|
519 |
+
"focus": 'series'
|
520 |
+
},
|
521 |
+
"data": [data_base[1]]
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"name": 'Large.Cell',
|
525 |
+
"type": 'bar',
|
526 |
+
"stack": 'total',
|
527 |
+
"label": {
|
528 |
+
"show": True
|
529 |
+
},
|
530 |
+
"emphasis": {
|
531 |
+
"focus": 'series'
|
532 |
+
},
|
533 |
+
"data": [data_base[2]]
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"name": 'Squamous.Cell',
|
537 |
+
"type": 'bar',
|
538 |
+
"stack": 'total',
|
539 |
+
"label": {
|
540 |
+
"show": True
|
541 |
+
},
|
542 |
+
"emphasis": {
|
543 |
+
"focus": 'series'
|
544 |
+
},
|
545 |
+
"data": [data_base[3]]
|
546 |
+
},
|
547 |
+
]
|
548 |
+
}
|
549 |
+
st_echarts(options=option)
|
550 |
+
if max_index == 0:
|
551 |
+
st.markdown("<h2 style='text-align: center; border: 2px solid #5370c6; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Adenocarcinoma </h2>".format(centered_style), unsafe_allow_html=True)
|
552 |
+
elif max_index == 1:
|
553 |
+
st.markdown("<h2 style='text-align: center; border: 2px solid green; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Normal </h2>".format(centered_style), unsafe_allow_html=True)
|
554 |
+
elif max_index == 2:
|
555 |
+
st.markdown("<h2 style='text-align: center; border: 2px solid orange; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Large cell carcinoma </h2>".format(centered_style), unsafe_allow_html=True)
|
556 |
+
elif max_index == 3:
|
557 |
+
st.markdown("<h2 style='text-align: center; border: 2px solid #f16565; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Squamous cell carcinoma </h2>".format(centered_style), unsafe_allow_html=True)
|
558 |
+
|
559 |
+
elif tabs == 'Analytics' and count_system() == 0:
|
560 |
+
st.markdown(
|
561 |
+
"""
|
562 |
+
<div style='border: 2px solid red; border-radius: 5px; padding: 5px; background-color: white;'>
|
563 |
+
<h3 style='text-align: center; color: red; font-size: 180%'> 🖼️ Image Analytics Not Detected ❌ </h3>
|
564 |
+
</div>
|
565 |
+
""", unsafe_allow_html=True)
|
566 |
+
|
567 |
+
elif tabs == 'More Information':
|
568 |
+
st.markdown(
|
569 |
+
"""
|
570 |
+
<div style='border: 2px dashed blue; border-radius: 5px; padding: 5px; background-color: white;'>
|
571 |
+
<h3 style='text-align: center; color: black; font-size: 180%'> 💻 Organizers 🖱️ </h3>
|
572 |
+
</div>
|
573 |
+
""", unsafe_allow_html=True)
|
574 |
+
st.markdown(
|
575 |
+
"""
|
576 |
+
<div style="display:flex; justify-content:center; align-items:center;">
|
577 |
+
<img src="https://drive.google.com/uc?export=view&id=1xupbYYXQZzjwMQiVGwT636oCXMga2ETF" style="width:300px; height:200px; margin: 10px;">
|
578 |
+
<img src="https://drive.google.com/uc?export=view&id=1evDy9sDtJ1T_WVR1bUnfyZkeSMjT9pfr" style="width:300px; height:200px; margin: 10px;">
|
579 |
+
<img src="https://drive.google.com/uc?export=view&id=1Sebh31aX8vdNe8P7oyBL714J_0qA5WYt" style="width:300px; height:200px; margin: 10px;">
|
580 |
+
</div>
|
581 |
+
""", unsafe_allow_html=True)
|
582 |
+
st.markdown(
|
583 |
+
"""
|
584 |
+
<div style="display:flex; justify-content:center; align-items:center;">
|
585 |
+
<h3 style="width:300px; height:200px; margin: 10px; font-size: 50% text-align: center;' "> 👑 Santipab Tongchan\nCall : 090-2471512 \n "[email protected]" </h3>
|
586 |
+
<h3 style="width:300px; height:200px; margin: 10px; font-size: 50% text-align: center;' "> Phakkhaphon Artburai\nCall : 091-0197314 \n "[email protected]" </h3>
|
587 |
+
<h3 style="width:300px; height:200px; margin: 10px; font-size: 50% text-align: center;' "> Natthawee Naewkumpol\nCall : 061-9487722 \n "[email protected]" </h3>
|
588 |
+
</div>
|
589 |
+
""", unsafe_allow_html=True)
|
590 |
+
st.markdown(
|
591 |
+
"""
|
592 |
+
<div style='border: 2px solid orange; border-radius: 5px; padding: 5px; background-color: white;'>
|
593 |
+
<h3 style='text-align: center; color: blue; font-size: 200%'> Princess Chulabhorn Science High School Buriram </h3>
|
594 |
+
</div>
|
595 |
+
""", unsafe_allow_html=True)
|
596 |
+
|
597 |
+
elif tabs == 'Reset':
|
598 |
+
def clear_folder(folder_name):
|
599 |
+
# Check if the folder exists
|
600 |
+
if not os.path.exists(folder_name):
|
601 |
+
print(f"{folder_name} does not exist.")
|
602 |
+
return
|
603 |
+
# Get a list of all files in the folder and its subdirectories
|
604 |
+
files = []
|
605 |
+
for dirpath, dirnames, filenames in os.walk(folder_name):
|
606 |
+
for filename in filenames:
|
607 |
+
files.append(os.path.join(dirpath, filename))
|
608 |
+
|
609 |
+
# Delete all files in the list
|
610 |
+
for file in files:
|
611 |
+
os.remove(file)
|
612 |
+
clear_folder('Adenocarcinoma')
|
613 |
+
clear_folder('Large cell carcinoma')
|
614 |
+
clear_folder('Normal')
|
615 |
+
clear_folder('Squamous cell carcinoma')
|
616 |
+
clear_folder('dcm_png')
|
617 |
+
#clear data in count_class
|
618 |
+
with open('count_class.txt', 'w') as file:
|
619 |
+
file.write('')
|
620 |
+
st.markdown(
|
621 |
+
"""
|
622 |
+
<div style='border: 2px solid #00FFFF; border-radius: 5px; padding: 5px; background-color: white;'>
|
623 |
+
<h3 style='text-align: center; color: blue; font-size: 180%'> 🔃 The information has been cleared. ✅ </h3>
|
624 |
+
</div>
|
625 |
+
""", unsafe_allow_html=True)
|
assets/css/style.css
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*{
|
2 |
+
font-family: 'Kanit', sans-serif !important;
|
3 |
+
}
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
.stTextArea{
|
9 |
+
height: auto;
|
10 |
+
|
11 |
+
}
|
12 |
+
|
13 |
+
div[class="css-keje6w e1tzin5v2"]{
|
14 |
+
column-gap: 100px;
|
15 |
+
}
|
16 |
+
|
17 |
+
h2{
|
18 |
+
color: #5ba56e;
|
19 |
+
}
|
20 |
+
|
21 |
+
h3{
|
22 |
+
color:#007a7a;
|
23 |
+
}
|
24 |
+
|
25 |
+
label[class="css-16huue1 effi0qh3"]{
|
26 |
+
|
27 |
+
font-size: 16px;
|
28 |
+
}
|
29 |
+
|
30 |
+
p{
|
31 |
+
color:#78701d;
|
32 |
+
font-size: 16px;
|
33 |
+
}
|
34 |
+
|
35 |
+
textarea{
|
36 |
+
color:#007a7a;
|
37 |
+
}
|
assets/webfonts/font.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
<link rel="preconnect" href="https://fonts.googleapis.com">
|
2 |
+
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
|
3 |
+
<link href="https://fonts.googleapis.com/css2?family=Kanit:wght@200&display=swap" rel="stylesheet">
|
className.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
adenocarcinoma
|
count_class.txt
ADDED
File without changes
|
css/style.css
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
section[data-testid='stSidebar'] {
|
2 |
+
background-color: #111;
|
3 |
+
min-width:unset !important;
|
4 |
+
width: unset !important;
|
5 |
+
flex-shrink: unset !important;
|
6 |
+
|
7 |
+
}
|
8 |
+
|
9 |
+
button[kind="header"] {
|
10 |
+
background-color: transparent;
|
11 |
+
color:rgb(180, 167, 141)
|
12 |
+
}
|
13 |
+
|
14 |
+
@media(hover){
|
15 |
+
/* header element to be removed */
|
16 |
+
header[data-testid="stHeader"] {
|
17 |
+
display:none;
|
18 |
+
}
|
19 |
+
|
20 |
+
/* The navigation menu specs and size */
|
21 |
+
section[data-testid='stSidebar'] > div {
|
22 |
+
height: 100%;
|
23 |
+
width: 95px;
|
24 |
+
position: relative;
|
25 |
+
z-index: 1;
|
26 |
+
top: 0;
|
27 |
+
left: 0;
|
28 |
+
background-color: #111;
|
29 |
+
overflow-x: hidden;
|
30 |
+
transition: 0.5s ease;
|
31 |
+
padding-top: 60px;
|
32 |
+
white-space: nowrap;
|
33 |
+
}
|
34 |
+
|
35 |
+
/* The navigation menu open and close on hover and size */
|
36 |
+
/* section[data-testid='stSidebar'] > div {
|
37 |
+
height: 100%;
|
38 |
+
width: 75px; /* Put some width to hover on. */
|
39 |
+
/* }
|
40 |
+
|
41 |
+
/* ON HOVER */
|
42 |
+
section[data-testid='stSidebar'] > div:hover{
|
43 |
+
width: 300px;
|
44 |
+
}
|
45 |
+
|
46 |
+
/* The button on the streamlit navigation menu - hidden */
|
47 |
+
button[kind="header"] {
|
48 |
+
display: none;
|
49 |
+
}
|
50 |
+
}
|
51 |
+
|
52 |
+
@media(max-width: 272px){
|
53 |
+
|
54 |
+
section[data-testid='stSidebar'] > div {
|
55 |
+
width:15rem;
|
56 |
+
}
|
57 |
+
}
|
58 |
+
|
59 |
+
*{
|
60 |
+
font-family: 'Kanit', sans-serif !important;
|
61 |
+
}
|
62 |
+
|
63 |
+
|
64 |
+
.stTextArea{
|
65 |
+
height: auto;
|
66 |
+
|
67 |
+
}
|
68 |
+
|
69 |
+
div[class="css-keje6w e1tzin5v2"]{
|
70 |
+
column-gap: 100px;
|
71 |
+
}
|
72 |
+
|
73 |
+
h2{
|
74 |
+
color: #5ba56e;
|
75 |
+
}
|
76 |
+
|
77 |
+
h3{
|
78 |
+
color:#007a7a;
|
79 |
+
}
|
80 |
+
|
81 |
+
label[class="css-16huue1 effi0qh3"]{
|
82 |
+
|
83 |
+
font-size: 16px;
|
84 |
+
}
|
85 |
+
|
86 |
+
p{
|
87 |
+
color:#78701d;
|
88 |
+
font-size: 16px;
|
89 |
+
}
|
90 |
+
|
91 |
+
textarea{
|
92 |
+
color:#007a7a;
|
93 |
+
}
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
libgl1
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets
|
2 |
+
huggingface-hub
|
3 |
+
streamlit
|
4 |
+
torch
|
5 |
+
torchaudio
|
6 |
+
torchvision
|
7 |
+
transformers
|
8 |
+
grad-cam
|
9 |
+
streamlit_echarts
|
10 |
+
streamlit-on-Hover-tabs
|
save_images/dff_image.png
ADDED
![]() |
save_images/gradcam_image.png
ADDED
![]() |
save_images/hi.txt
ADDED
File without changes
|
save_name.txt
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tra_ade_0.png
|
2 |
+
tra_ade_1.png
|
3 |
+
tra_ade_2.png
|
4 |
+
tra_ade_3.png
|
5 |
+
tra_ade_4.png
|
6 |
+
tra_ade_5.png
|
7 |
+
tra_ade_6.png
|
8 |
+
tra_ade_7.png
|
9 |
+
tra_ade_8.png
|
10 |
+
tra_ade_9.png
|
11 |
+
tra_ade_10.png
|
12 |
+
tra_ade_11.png
|
13 |
+
tra_ade_12.png
|
14 |
+
tra_ade_13.png
|
15 |
+
tra_ade_14.png
|
16 |
+
tra_ade_15.png
|
17 |
+
tra_ade_16.png
|
18 |
+
tra_ade_17.png
|
19 |
+
tra_ade_18.png
|
20 |
+
tra_ade_19.png
|
21 |
+
tra_ade_20.png
|
22 |
+
tra_ade_21.png
|
23 |
+
tra_ade_23.png
|
24 |
+
tra_ade_25.png
|
system.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{'adenocarcinoma': 99.79050159454346, 'normal': 0.10952663142234087, 'large.cell': 0.05803077365271747, 'squamous.cell': 0.04194618377368897}
|