Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,85 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
|
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, pipeline
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import faiss
|
6 |
+
import numpy as np
|
7 |
|
8 |
+
# Configuration
|
9 |
+
class Config:
|
10 |
+
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
11 |
+
embedding_model = "all-MiniLM-L6-v2"
|
12 |
+
vector_dim = 384
|
13 |
+
top_k = 3
|
14 |
+
chunk_size = 256
|
15 |
|
16 |
+
# Vector Database
|
17 |
+
class VectorDB:
|
18 |
+
def __init__(self):
|
19 |
+
self.index = faiss.IndexFlatL2(Config.vector_dim)
|
20 |
+
self.texts = []
|
21 |
+
self.embedding_model = SentenceTransformer(Config.embedding_model)
|
22 |
+
|
23 |
+
def add_text(self, text: str):
|
24 |
+
embedding = self.embedding_model.encode([text])[0]
|
25 |
+
embedding = np.array([embedding], dtype=np.float32)
|
26 |
+
faiss.normalize_L2(embedding)
|
27 |
+
self.index.add(embedding)
|
28 |
+
self.texts.append(text)
|
29 |
+
|
30 |
+
def search(self, query: str):
|
31 |
+
if self.index.ntotal == 0:
|
32 |
+
return []
|
33 |
+
query_embedding = self.embedding_model.encode([query])[0]
|
34 |
+
query_embedding = np.array([query_embedding], dtype=np.float32)
|
35 |
+
faiss.normalize_L2(query_embedding)
|
36 |
+
D, I = self.index.search(query_embedding, min(Config.top_k, self.index.ntotal))
|
37 |
+
return [self.texts[i] for i in I[0] if i < len(self.texts)]
|
38 |
|
39 |
+
# Load Model
|
40 |
+
class TinyChatModel:
|
41 |
+
def __init__(self):
|
42 |
+
self.tokenizer = AutoTokenizer.from_pretrained(Config.model_name)
|
43 |
+
self.pipe = pipeline("text-generation", model=Config.model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
def generate_response(self, message: str, context: str = ""):
|
46 |
+
messages = [{"role": "user", "content": message}]
|
47 |
+
if context:
|
48 |
+
messages.insert(0, {"role": "system", "content": f"Context:\n{context}"})
|
49 |
+
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
50 |
+
outputs = self.pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
51 |
+
return outputs[0]["generated_text"].split("<|assistant|>")[-1].strip()
|
52 |
|
53 |
+
# Initialize
|
54 |
+
vector_db = VectorDB()
|
55 |
+
chat_model = TinyChatModel()
|
56 |
|
57 |
+
def chat_interface(user_input):
|
58 |
+
context = "\n".join(vector_db.search(user_input))
|
59 |
+
response = chat_model.generate_response(user_input, context)
|
60 |
+
vector_db.add_text(f"User: {user_input}\nAssistant: {response}")
|
61 |
+
return response
|
62 |
|
63 |
+
def add_text_interface(text):
|
64 |
+
vector_db.add_text(text)
|
65 |
+
return "Text added to memory!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
# Gradio UI
|
68 |
+
demo = gr.Blocks()
|
69 |
+
with demo:
|
70 |
+
gr.Markdown("# 🦙 TinyChat - AI Chatbot")
|
71 |
+
with gr.Row():
|
72 |
+
chatbot = gr.Chatbot()
|
73 |
+
with gr.Row():
|
74 |
+
user_input = gr.Textbox(label="Your Message")
|
75 |
+
send_btn = gr.Button("Send")
|
76 |
+
with gr.Row():
|
77 |
+
add_text_input = gr.Textbox(label="Add Knowledge to AI")
|
78 |
+
add_text_btn = gr.Button("Add Text")
|
79 |
+
|
80 |
+
send_btn.click(chat_interface, inputs=user_input, outputs=chatbot)
|
81 |
+
add_text_btn.click(add_text_interface, inputs=add_text_input, outputs=gr.Textbox())
|
82 |
|
83 |
+
# Launch
|
84 |
if __name__ == "__main__":
|
85 |
demo.launch()
|