Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,93 @@
|
|
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
|
|
2 |
from pydantic import BaseModel
|
3 |
-
from transformers import pipeline
|
4 |
import torch
|
5 |
|
6 |
-
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
)
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
class
|
20 |
-
|
21 |
|
22 |
-
@app.post("/
|
23 |
-
async def
|
24 |
try:
|
25 |
-
|
26 |
-
request.
|
27 |
max_length=request.max_length,
|
28 |
-
|
29 |
-
|
30 |
-
)
|
31 |
-
|
32 |
-
return SummarizationResponse(summary=summary)
|
33 |
except Exception as e:
|
34 |
raise HTTPException(status_code=500, detail=str(e))
|
35 |
|
36 |
@app.get("/health")
|
37 |
async def health_check():
|
38 |
return {"status": "healthy"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
+
from fastapi.middleware.cors import CORSMiddleware
|
5 |
from pydantic import BaseModel
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
7 |
import torch
|
8 |
|
9 |
+
os.environ['TRANSFORMERS_CACHE'] = '/tmp/transformers_cache'
|
10 |
+
os.makedirs('/tmp/transformers_cache', exist_ok=True)
|
11 |
|
12 |
+
app = FastAPI(title="DeepSeek LLM Interface")
|
13 |
+
|
14 |
+
app.add_middleware(
|
15 |
+
CORSMiddleware,
|
16 |
+
allow_origins=["*"],
|
17 |
+
allow_credentials=True,
|
18 |
+
allow_methods=["*"],
|
19 |
+
allow_headers=["*"],
|
20 |
+
)
|
21 |
+
|
22 |
+
model_name = "deepseek-ai/deepseek-llm-7b-base"
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir='/tmp/transformers_cache')
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(
|
25 |
+
model_name,
|
26 |
+
cache_dir='/tmp/transformers_cache',
|
27 |
+
torch_dtype=torch.float16,
|
28 |
+
device_map="auto"
|
29 |
)
|
30 |
|
31 |
+
def generate_response(prompt, max_length=500, temperature=0.7):
|
32 |
+
"""Generate response using the DeepSeek model"""
|
33 |
+
try:
|
34 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
35 |
+
outputs = model.generate(
|
36 |
+
**inputs,
|
37 |
+
max_length=max_length,
|
38 |
+
temperature=temperature,
|
39 |
+
do_sample=True,
|
40 |
+
pad_token_id=tokenizer.eos_token_id
|
41 |
+
)
|
42 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
43 |
+
return response
|
44 |
+
except Exception as e:
|
45 |
+
print(f"Error in generate_response: {str(e)}")
|
46 |
+
return f"Error generating response: {str(e)}"
|
47 |
+
|
48 |
+
class GenerationRequest(BaseModel):
|
49 |
+
prompt: str
|
50 |
+
max_length: int = 500
|
51 |
+
temperature: float = 0.7
|
52 |
|
53 |
+
class GenerationResponse(BaseModel):
|
54 |
+
response: str
|
55 |
|
56 |
+
@app.post("/generate", response_model=GenerationResponse)
|
57 |
+
async def generate_text(request: GenerationRequest):
|
58 |
try:
|
59 |
+
response = generate_response(
|
60 |
+
request.prompt,
|
61 |
max_length=request.max_length,
|
62 |
+
temperature=request.temperature
|
63 |
+
)
|
64 |
+
return GenerationResponse(response=response)
|
|
|
|
|
65 |
except Exception as e:
|
66 |
raise HTTPException(status_code=500, detail=str(e))
|
67 |
|
68 |
@app.get("/health")
|
69 |
async def health_check():
|
70 |
return {"status": "healthy"}
|
71 |
+
|
72 |
+
def gradio_generate(prompt, max_length, temperature):
|
73 |
+
return generate_response(prompt, int(max_length), float(temperature))
|
74 |
+
|
75 |
+
interface = gr.Interface(
|
76 |
+
fn=gradio_generate,
|
77 |
+
inputs=[
|
78 |
+
gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
|
79 |
+
gr.Slider(minimum=50, maximum=1000, value=500, step=50, label="Max Length"),
|
80 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
|
81 |
+
],
|
82 |
+
outputs=gr.Textbox(label="Generated Response"),
|
83 |
+
title="DeepSeek LLM Interface",
|
84 |
+
description="Enter a prompt to generate text using DeepSeek LLM",
|
85 |
+
examples=[
|
86 |
+
["Write a short story about a mysterious garden"],
|
87 |
+
["Explain quantum computing in simple terms"],
|
88 |
+
["Create a recipe for chocolate chip cookies"]
|
89 |
+
]
|
90 |
+
)
|
91 |
+
|
92 |
+
app = gr.mount_gradio_app(app, interface, path="/")
|
93 |
+
|