Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
from pydantic import BaseModel | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import torch | |
import uvicorn | |
# Create FastAPI app | |
app = FastAPI() | |
# Load the tokenizer and model | |
MODEL_NAME = "facebook/bart-large-cnn" # A lightweight summarization model | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME).to("cpu") # Use "cuda" if you have a GPU | |
# Define input format | |
class InputText(BaseModel): | |
text: str | |
async def summarize_text(input_text: InputText): | |
inputs = tokenizer(input_text.text, return_tensors="pt", max_length=1024, truncation=True) | |
summary_ids = model.generate(inputs.input_ids, max_length=150, min_length=50, length_penalty=2.0) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return {"summary": summary} | |
# Ensure the application starts when running locally | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |