ali121300's picture
Update app.py
172ff2c verified
raw
history blame
7.74 kB
import os
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub
from deep_translator import GoogleTranslator
import pandas as pd
# set this key as an environment variable
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['Key2']
###########################################################################################
def get_pdf_text(pdf_docs : list) -> str:
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
#######################################################################################
def load_file():
loader = TextLoader('d2.txt')
documents = loader.load()
return documents
########################################################################################
def get_text_chunks(text:str) ->list:
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks : list) -> FAISS:
model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
encode_kwargs = {
"normalize_embeddings": True
} # set True to compute cosine similarity
embeddings = HuggingFaceBgeEmbeddings(
model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
)
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain:
# llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
llm = HuggingFaceHub(
#repo_id="mistralai/Mistral-7B-Instruct-v0.2",
#repo_id="google/gemma-1.1-7b-it",
#repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
repo_id="selfrag/selfrag_llama2_7b",
model_kwargs={"temperature": 0.1, "max_length": 2048},
)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm, retriever=vectorstore.as_retriever(),memory=memory
)
return conversation_chain
def handle_userinput(user_question:str):
response = st.session_state.conversation({"question": user_question})
st.session_state.chat_history = response["chat_history"]
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
text2=message.content
translator = GoogleTranslator(source='english', target='persian')
result = translator.translate(text2)
st.write("سوال کاربر: "+result)
else:
text1=message.content
translator = GoogleTranslator(source='english', target='persian')
result = translator.translate(text1)
st.write("پاسخ ربات: "+result)
#############################################################################################################
def read_pdf_pr_en(pdf_file_path):
from deep_translator import GoogleTranslator
import PyPDF2
# مسیر فایل PDF را تعیین کنید
#pdf_file_path = '/content/d2en.pdf'
# باز کردن فایل PDF
with open(pdf_file_path, 'rb') as pdf_file:
pdf_reader = PyPDF2.PdfReader(pdf_file)
# خواندن محتوای صفحه‌ها
full_text = ''
for page in pdf_reader.pages:
page_pdf=page.extract_text()
translator = GoogleTranslator(source='persian', target='english')
result = translator.translate(page_pdf)
full_text +=result
st.write(full_text)
return(full_text)
#################################################################################################################
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
txt_page=page.extract_text()
text += txt_page
return text
#######################################################################################################################
def upload_xls():
st.title("آپلود و نمایش فایل اکسل")
uploaded_file = st.file_uploader("لطفاً فایل اکسل خود را آپلود کنید", type=["xlsx", "xls"])
if uploaded_file is not None:
df = pd.read_excel(uploaded_file)
st.write("دیتا فریم مربوط به فایل اکسل:")
st.write(df)
return df
################################################################################################################
def sentences_f(sentence,df2):
words = sentence.split()
df1 = pd.DataFrame(words, columns=['کلمات'])
df1['معادل'] = ''
for i, word in df1['کلمات'].items():
match = df2[df2['کلمات'] == word]
if not match.empty:
df1.at[i, 'معادل'] = match['معادل'].values[0]
df1['معادل'] = df1.apply(lambda row: row['کلمات'] if row['معادل'] == '' else row['معادل'], axis=1)
translated_sentence = ' '.join(df1['معادل'].tolist())
return translated_sentence
####################################################################################################################
####################################################################################################################
def main():
st.set_page_config(
page_title="Chat Bot PDFs",
page_icon=":books:",
)
#st.markdown("# Chat with a Bot")
#st.markdown("This bot tries to answer questions about multiple PDFs. Let the processing of the PDF finish before adding your question. 🙏🏾")
st.write(css, unsafe_allow_html=True)
#df2=upload_xls()
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat Bot PDFs :books:")
user_question = st.text_input("Ask a question about your documents:")
#user_question2=sentences_f(sentence=user_question1,df2=df2)
#translator = GoogleTranslator(source='persian', target='english')
#user_question = translator.translate(user_question2)
if st.button("Answer"):
with st.spinner("Answering"):
handle_userinput(user_question)
if st.button("CLEAR"):
with st.spinner("CLEARING"):
st.cache_data.clear()
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
# get pdf text
raw_text = get_pdf_text(pdf_docs)
# get the text chunks
text_chunks = get_text_chunks(raw_text)
# create vector store
vectorstore = get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(vectorstore)
#compelete build model
st.write("compelete build model")
if __name__ == "__main__":
main()