Spaces:
Sleeping
Sleeping
File size: 3,845 Bytes
b39298d 990d40d b39298d 90c492c f94f9d9 b39298d b369983 b39298d 93a48f2 b39298d 1d758a2 b39298d 1d758a2 b39298d 1d758a2 b39298d f94f9d9 b39298d cbacd5d b39298d 1d758a2 b39298d 93a48f2 e5d3bd2 1d758a2 8357cfe b39298d 1d758a2 b39298d b398150 b3fb01d 1d758a2 25af079 b369983 1d758a2 25af079 1d758a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
from langchain import LLMChain
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain.llms import HuggingFaceHub
from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings
import google.generativeai as genai
from langchain.vectorstores import FAISS
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
import time
from dotenv import load_dotenv
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HF_TOKEN")
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=200)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks):
HF_TOKEN = os.getenv("HF_TOKEN")
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=HF_TOKEN, model_name="BAAI/bge-base-en-v1.5")
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
vector_store.save_local("faiss_index")
def get_conversational_chain():
prompt_template = """
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
provided context just say, "answer is not available in the Provided PDF", don't provide the wrong answer\n\n
Context:\n {context}?\n
Question: \n{question}\n
Answer:
"""
# model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.1)
model = HuggingFaceHub(repo_id="google/gemma-1.1-7b-it",
model_kwargs={"temperature": 0.2,"max_new_tokens":512, "return_only_answer":True})
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain = LLMChain(llm=model, prompt=prompt)
return chain
def user_input(user_question):
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
response = chain({"context": docs, "question": user_question}, return_only_outputs=True)
return response
# def response_generator(response):
# for word in response.split():
# yield word + " "
# time.sleep(0.05)
# Streamlit app initialization
st.title("Chat With PDF 📄")
if 'messages' not in st.session_state:
st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}]
with st.sidebar:
st.title("Menu:")
uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
if st.button("Submit & Process"):
with st.spinner("Processing..."):
raw_text = get_pdf_text(uploaded_file)
text_chunks = get_text_chunks(raw_text)
get_vector_store(text_chunks)
st.success("Done")
user_prompt = st.chat_input("Ask me anything about the content of the PDF:")
if user_prompt:
st.session_state.messages.append({'role': 'user', "content": user_prompt})
response = user_input(user_prompt)
# answer = response_generator(response)
st.session_state.messages.append({'role': 'assistant', "content": response})
for message in st.session_state.messages:
with st.chat_message(message['role']):
st.write(message['content'])
|