Spaces:
Sleeping
Sleeping
import os | |
import sys | |
sys.path.append(sys.path[0].replace('scripts', '')) | |
from urllib.request import urlretrieve | |
import pandas as pd | |
from config.data_paths import PROCESSED_DATA_PATH | |
import re | |
from scripts.utils import load_config | |
PROMPTS_URL = load_config()['data'].get('prompts_corpus_url', 'https://huggingface.co/datasets/poloclub/diffusiondb/resolve/main/metadata.parquet') | |
def preprocess_text(text: str) -> str: | |
""" | |
Text preprocessing function. | |
Args: | |
text: Raw text prompt. | |
Returns: | |
Preprocessed text. | |
""" | |
text = text.strip() # Remove leading/trailing whitespace | |
text = re.sub(r'\s+', ' ', text) # Replace multiple spaces with a single space | |
return text | |
def clean_corpus(): | |
""" | |
Utility function to clean and preprocess the prompt corpus. | |
""" | |
if not os.path.isfile(os.path.join(PROCESSED_DATA_PATH, 'prompt_corpus_clean.parquet')): # to speed up the process | |
os.makedirs(PROCESSED_DATA_PATH, exist_ok=True) | |
df = pd.read_parquet(PROMPTS_URL).sample(5000, random_state=123) | |
assert 'prompt' in df.columns, "Parquet file must contain a 'prompt' column." | |
df = df[df['prompt'].notna()][['prompt']] # drop missing rows | |
df['prompt'] = df['prompt'].apply(preprocess_text) # preprocess each prompt | |
df = df.drop_duplicates() # drop duplicates | |
df.to_parquet(os.path.join(PROCESSED_DATA_PATH, 'prompt_corpus_clean.parquet')) | |