File size: 4,763 Bytes
5e9edd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
import sys
sys.path.append(sys.path[0].replace('scripts', ''))
import pandas as pd
import numpy as np

from config.data_paths import VECTORDB_PATH

from typing import Sequence, List, Tuple
import faiss
from sentence_transformers import SentenceTransformer


class Vectorizer:
    def __init__(self, model_name: str) -> None:
        """

        Initialize the vectorizer with a pre-trained embedding model.

        Args:

            model_name: The name of the pre-trained embedding model (compatible with sentence-transformers).

        """
        self.model = SentenceTransformer(model_name)

    def transform(self, prompts: Sequence[str], build_index=False) -> np.ndarray:
        """

        Transform texts into numerical vectors using the specified model.

        Args:

            prompts: The sequence of raw corpus prompts.

        Returns:

            Vectorized prompts as a numpy array.

        """
        embeddings = self.model.encode(prompts, show_progress_bar=True)
        embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True) # normalize embeddings
        if build_index:
            # self.embeddings=embeddings
            if os.path.isfile(os.path.join(VECTORDB_PATH, 'prompts_index.faiss')):
                print('Embeddings already stored in vector db')
            else:
                index = self._build_index(embeddings)
                faiss.write_index(index, os.path.join(VECTORDB_PATH, 'prompts_index.faiss'))
        else:
            return embeddings

    def _build_index(self, embeddings: np.ndarray) -> faiss.IndexFlatIP:
        """

        Build and return a FAISS index for the given embeddings.

        Args:

            embeddings: A numpy array of prompt embeddings.

        Returns:

            FAISS index for efficient similarity search.

        """
        index = faiss.IndexFlatIP(embeddings.shape[1])  # Cosine similarity (IP on normalized vectors)
        index.add(embeddings)
        return index

def cosine_similarity(query_vector: np.ndarray, corpus_vectors: np.ndarray) -> np.ndarray:
    """

    Calculate cosine similarity between prompt vectors.

    Args:

        query_vector: Vectorized prompt query of shape (1, D).

        corpus_vectors: Vectorized prompt corpus of shape (N, D).

    Returns:

        A vector of shape (N,) with values in range [-1, 1] where 1 is maximum similarity.

    """
    return np.dot(corpus_vectors, query_vector.T).flatten()

class PromptSearchEngine:
    def __init__(self, corpus: str, model_name: str = 'all-MiniLM-L6-v2', use_index=False) -> None:
        """

        Initialize search engine by vectorizing prompt corpus.

        Vectorized prompt corpus should be used to find the top n most similar prompts.

        Args:

            corpus: Path to the parquet dataset with raw prompts.

            model_name: The name of the pre-trained embedding model.

        """
        self.use_index=use_index
        self.prompts=pd.read_parquet(corpus)['prompt'].to_list()
        self.prompts=self.prompts# if use_index else np.random.choice(self.prompts, 1000, replace=False)
        self.vectorizer = Vectorizer(model_name)
        self.embeddings = self.vectorizer.transform(self.prompts, 
                                  build_index=use_index) # build index initially for faster retrieval
        if use_index:
            self.index = faiss.read_index(os.path.join(VECTORDB_PATH, 'prompts_index.faiss'))

    def most_similar(self, query: str, n: int = 5) -> List[Tuple[float, str]]:
        """

        Return top n most similar prompts from the corpus.

        Input query prompt is vectorized using the Vectorizer. After that, use the cosine_similarity

        function to get the top n most similar prompts from the corpus.

        Args:

            query: The raw query prompt input from the user.

            n: The number of similar prompts to return from the corpus.

        Returns:

            The list of top n most similar prompts from the corpus along with similarity scores.

            Note that returned prompts are verbatim.

        """
        query_vector = self.vectorizer.transform([query])
        if self.use_index:
            distances, indices = self.index.search(query_vector, n)
            results = [{'prompt': self.prompts[idx], 'score': distances[0][i]} for i, idx in enumerate(indices[0])]
            return results
        else:
            similarities = cosine_similarity(query_vector, self.embeddings)
            top_indices = np.argsort(-similarities)[:n]  # Sort in descending order
            return [{'prompt': self.prompts[i], 'score': similarities[i]} for i in top_indices]